Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping biological tubes in check: New insights into tube size morphogenesis

24.01.2006


The function of tubular organs like the kidneys, lungs, and vessels of the vascular system is critically dependent on the length and diameter of the tubular branches of which they are composed. Several devastating pathological conditions like polycystic kidney disease and ischemias have been intimately linked to the aberrant sizes of tubular organs. Yet the underlying cellular and molecular mechanisms that control tube size are poorly understood, and, consequently, drugs that intervene in tubular organ disorders are lacking.



Over the past few years, the tracheal system of the fruit fly Drosophila has provided important general insights into epithelial organ morphogenesis. The fly’s tracheal system is a tubular network that functions in respiration by transporting oxygen throughout the insect body. In two separate new studies, researchers have taken advantage of the usefulness of the Drosophila tracheal system as a model for understanding the development of tubular organs. Both studies point to the important role played in this process by the luminal extracellular matrix (ECM)--a scaffold of sorts that provides structure to surrounding cells and tissues. Past work had shown that inside the tracheal tube, or lumen, the polysaccharide molecule chitin forms a cylinder that is essential for the coordinated dilation of the surrounding epithelium to its normal mature size: Mutants lacking chitin show tubes with irregular diameter.

In one of the new studies, a group led by Christos Samakovlis at Stockholm University has revealed further evidence for an "instructive" function of the luminal ECM in tube size control. They found that while uniform expansion of tube diameter requires the growth of a luminal chitin scaffold, the subsequent modification of this chitinous mandrel by specialized enzymes (called chitin deacetylases) instructs the termination of tube elongation. Mutations in two genes encoding these enzymes disrupt tubular morphogenesis. The authors’ additional discovery that proper luminal localization of one of the chitin deacetylases requires a specialized secretory pathway and intact structures called paracellular septate junctions provides a mechanistic model for tracheal tube size regulation.


The other new study, from Stefan Luschnig and colleagues at Bayreuth University, Germany, and at Stanford University, reports a similar set of findings. These researchers also identified the two chitin deacetyase genes as specifically controlling tube length. As did the Samakovlis group, the researchers found that mutations in these genes, called serpentine (serp) and vermiform (verm), cause excessively elongated and tortuous tracheal tubes. Unlike previously characterized genes, serp and verm are not required for producing chitin, but rather are required for its normal fibrillar structure. The findings of the two groups suggest that tube length is controlled by modulating physical properties of the chitin cylinder. These properties may be sensed by tracheal cells, mediating the restriction of cell elongation.

Given the many similarities in the developmental mechanisms and cellular designs of tubular organs across species, the distinct roles of the luminal ECM in tracheal tube size control provide new leads in the investigation of lumen size regulation in a variety of tubular organs.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>