Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping biological tubes in check: New insights into tube size morphogenesis

24.01.2006


The function of tubular organs like the kidneys, lungs, and vessels of the vascular system is critically dependent on the length and diameter of the tubular branches of which they are composed. Several devastating pathological conditions like polycystic kidney disease and ischemias have been intimately linked to the aberrant sizes of tubular organs. Yet the underlying cellular and molecular mechanisms that control tube size are poorly understood, and, consequently, drugs that intervene in tubular organ disorders are lacking.



Over the past few years, the tracheal system of the fruit fly Drosophila has provided important general insights into epithelial organ morphogenesis. The fly’s tracheal system is a tubular network that functions in respiration by transporting oxygen throughout the insect body. In two separate new studies, researchers have taken advantage of the usefulness of the Drosophila tracheal system as a model for understanding the development of tubular organs. Both studies point to the important role played in this process by the luminal extracellular matrix (ECM)--a scaffold of sorts that provides structure to surrounding cells and tissues. Past work had shown that inside the tracheal tube, or lumen, the polysaccharide molecule chitin forms a cylinder that is essential for the coordinated dilation of the surrounding epithelium to its normal mature size: Mutants lacking chitin show tubes with irregular diameter.

In one of the new studies, a group led by Christos Samakovlis at Stockholm University has revealed further evidence for an "instructive" function of the luminal ECM in tube size control. They found that while uniform expansion of tube diameter requires the growth of a luminal chitin scaffold, the subsequent modification of this chitinous mandrel by specialized enzymes (called chitin deacetylases) instructs the termination of tube elongation. Mutations in two genes encoding these enzymes disrupt tubular morphogenesis. The authors’ additional discovery that proper luminal localization of one of the chitin deacetylases requires a specialized secretory pathway and intact structures called paracellular septate junctions provides a mechanistic model for tracheal tube size regulation.


The other new study, from Stefan Luschnig and colleagues at Bayreuth University, Germany, and at Stanford University, reports a similar set of findings. These researchers also identified the two chitin deacetyase genes as specifically controlling tube length. As did the Samakovlis group, the researchers found that mutations in these genes, called serpentine (serp) and vermiform (verm), cause excessively elongated and tortuous tracheal tubes. Unlike previously characterized genes, serp and verm are not required for producing chitin, but rather are required for its normal fibrillar structure. The findings of the two groups suggest that tube length is controlled by modulating physical properties of the chitin cylinder. These properties may be sensed by tracheal cells, mediating the restriction of cell elongation.

Given the many similarities in the developmental mechanisms and cellular designs of tubular organs across species, the distinct roles of the luminal ECM in tracheal tube size control provide new leads in the investigation of lumen size regulation in a variety of tubular organs.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>