Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings about messenger molecule raise hopes for new drugs

19.01.2006


Uppsala University scientists have developed a new method for measuring the concentration of the messenger substance for cells, cyclic adenosine monophosphate (cAMP), in individual living cells. Thanks to this method, the researchers have been able to see how the same messenger molecule can regulate disparate cell functions. The findings will probably be of great value in the development of new drugs for diabetes, among other diseases. The study is being published in the scientific journal Nature on January 19.



Cyclic adenosine monophosphate (cAMP) is a messenger molecule that transmits signals from the cell surface to govern a number of different functions inside the cell. cAMP is vital for the regulation of metabolism, ion channel activity, secretion, and genetic expression, for instance. In insulin-producing cells cAMP serves as a powerful booster of insulin release.

Four Uppsala researchers have developed a new method that makes it possible to measure the concentration of cAMP in individual living cells. With the new method the scientists have studied insulin-producing cells and found that stimulation with hormones leads to regular variations in the concentration of cAMP.


The scientists have also seen that the frequency of the variations in concentration gives rise to different signals. Short-lived increases in concentration were sufficient to activate calcium ion channels, while a stable increase in concentration was necessary for a cAMP-activated protein to enter the cell nucleus and regulate the expression of genes.

- The pattern of concentration changes thus determines what information the messenger molecule is to convey. In this way, the same messenger substance can regulate disparate cell functions. It has never been demonstrated before that this is how cAMP works, says Anders Tengholm, who leads the study.

The Uppsala study enhances our understanding of the signals that regulate the release of insulin. This is a key finding for diabetes research, since this release is disturbed in patients with type-II diabetes.

The new method will be of great value in the mapping of many cAMP-regulated processes in various types of cells.

- The new ability to measure cAMP will probably facilitate the development of new drugs not only for diabetes but also for disorders of the heart, nervous system, and certain forms of cancer, says Anders Tengholm.

The findings are being published in the journal Nature on January 19. Co-authors are Oleg Dyachok, Yegor Isakov, and Jenny Sågetorp.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.nature.com

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>