Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings about messenger molecule raise hopes for new drugs

19.01.2006


Uppsala University scientists have developed a new method for measuring the concentration of the messenger substance for cells, cyclic adenosine monophosphate (cAMP), in individual living cells. Thanks to this method, the researchers have been able to see how the same messenger molecule can regulate disparate cell functions. The findings will probably be of great value in the development of new drugs for diabetes, among other diseases. The study is being published in the scientific journal Nature on January 19.



Cyclic adenosine monophosphate (cAMP) is a messenger molecule that transmits signals from the cell surface to govern a number of different functions inside the cell. cAMP is vital for the regulation of metabolism, ion channel activity, secretion, and genetic expression, for instance. In insulin-producing cells cAMP serves as a powerful booster of insulin release.

Four Uppsala researchers have developed a new method that makes it possible to measure the concentration of cAMP in individual living cells. With the new method the scientists have studied insulin-producing cells and found that stimulation with hormones leads to regular variations in the concentration of cAMP.


The scientists have also seen that the frequency of the variations in concentration gives rise to different signals. Short-lived increases in concentration were sufficient to activate calcium ion channels, while a stable increase in concentration was necessary for a cAMP-activated protein to enter the cell nucleus and regulate the expression of genes.

- The pattern of concentration changes thus determines what information the messenger molecule is to convey. In this way, the same messenger substance can regulate disparate cell functions. It has never been demonstrated before that this is how cAMP works, says Anders Tengholm, who leads the study.

The Uppsala study enhances our understanding of the signals that regulate the release of insulin. This is a key finding for diabetes research, since this release is disturbed in patients with type-II diabetes.

The new method will be of great value in the mapping of many cAMP-regulated processes in various types of cells.

- The new ability to measure cAMP will probably facilitate the development of new drugs not only for diabetes but also for disorders of the heart, nervous system, and certain forms of cancer, says Anders Tengholm.

The findings are being published in the journal Nature on January 19. Co-authors are Oleg Dyachok, Yegor Isakov, and Jenny Sågetorp.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.nature.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>