Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings about messenger molecule raise hopes for new drugs

19.01.2006


Uppsala University scientists have developed a new method for measuring the concentration of the messenger substance for cells, cyclic adenosine monophosphate (cAMP), in individual living cells. Thanks to this method, the researchers have been able to see how the same messenger molecule can regulate disparate cell functions. The findings will probably be of great value in the development of new drugs for diabetes, among other diseases. The study is being published in the scientific journal Nature on January 19.



Cyclic adenosine monophosphate (cAMP) is a messenger molecule that transmits signals from the cell surface to govern a number of different functions inside the cell. cAMP is vital for the regulation of metabolism, ion channel activity, secretion, and genetic expression, for instance. In insulin-producing cells cAMP serves as a powerful booster of insulin release.

Four Uppsala researchers have developed a new method that makes it possible to measure the concentration of cAMP in individual living cells. With the new method the scientists have studied insulin-producing cells and found that stimulation with hormones leads to regular variations in the concentration of cAMP.


The scientists have also seen that the frequency of the variations in concentration gives rise to different signals. Short-lived increases in concentration were sufficient to activate calcium ion channels, while a stable increase in concentration was necessary for a cAMP-activated protein to enter the cell nucleus and regulate the expression of genes.

- The pattern of concentration changes thus determines what information the messenger molecule is to convey. In this way, the same messenger substance can regulate disparate cell functions. It has never been demonstrated before that this is how cAMP works, says Anders Tengholm, who leads the study.

The Uppsala study enhances our understanding of the signals that regulate the release of insulin. This is a key finding for diabetes research, since this release is disturbed in patients with type-II diabetes.

The new method will be of great value in the mapping of many cAMP-regulated processes in various types of cells.

- The new ability to measure cAMP will probably facilitate the development of new drugs not only for diabetes but also for disorders of the heart, nervous system, and certain forms of cancer, says Anders Tengholm.

The findings are being published in the journal Nature on January 19. Co-authors are Oleg Dyachok, Yegor Isakov, and Jenny Sågetorp.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.nature.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>