Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mice with defective memory may hold clues to schizophrenia


By deleting a single gene in a small portion of the brains of mice, researchers at UT Southwestern Medical Center found that the animals were affected in a way resembling schizophrenia in humans.

After the gene was removed, the animals, which had been trained to use external cues to look for chocolate treats buried in sand, couldn’t learn a similar task, the researchers report in a paper appearing in today’s issue of The Journal of Neuroscience.

The researchers deleted the gene, which codes for a part of a protein involved in passing signals between nerve cells needed for learning and memory. When a similar protein is blocked by drugs in humans, it leads to a psychotic state similar to schizophrenia.

"We think that both our genetic rodent model as well as a new learning and memory test we developed may provide valuable tools in the investigation of schizophrenia," said Dr. Robert Greene, professor of psychiatry and senior author of the study.

The researchers developed the training method to test the animals’ memories. Chocolate was buried in a cup containing scented sand, which hid the treat’s odor. A second cup contained sand with a different scent but no treat. The researchers could change the cage’s environment by affixing colored cutouts to the transparent cage walls, adding a textured floor and making other modifications.

The normal mice learned that in the first environment, the chocolate was linked to the first scent. When the researchers changed to a second environment, the mice learned to find the chocolate using the second scent.

Once the mice were trained, an area of the brain called the hippocampus was injected with a genetically engineered virus that selectively cut out the NR1 gene. NR1 produces a protein that is critical for molding nerve messages in an area of the hippocampus called the CA3, which is associated with distinguishing complex patterns.

It is this molding that underlies the hippocampal-dependent learning and memory that is needed to distinguish the complex patterns.

The researchers then attempted to train the mice in memory tasks with new scents and new environments, but the animals lacking the gene couldn’t learn. The control group, which received an injection that doesn’t cut out NR1, learned as quickly as before.

This shows that the treated animals couldn’t react properly to situational cues, which also happens in people with schizophrenia, Dr. Greene said.

The researchers hope to see in future studies if similar small changes to nearby brain regions involved in learning and memory result in the same kind of problems.

"In addition, we want to use a similar task in humans to that used in this study to see if patients with schizophrenia have similar deficits in cognition as we observed in our experimental mice," Dr. Greene said. "This will help determine whether our genetically altered animals provide a good model of the psychosis associated with schizophrenia."

Former UT Southwestern researchers involved in the study were Dr. Tarek Rajji, a psychiatry resident now at the University of Pittsburgh, and Dr. David Chapman, a postdoctoral fellow now at UCB Pharma. Dr. Howard Eichenbaum of Boston University also participated in the study.

The work was supported by the National Institute of Mental Health and the Department of Veterans Affairs.

Aline McKenzie | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>