Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Absence of critical protein linked to infertility


The absence of a key protein may lead to infertility.

Researchers at the University of Illinois at Urbana-Champaign report that experiments involving mice -- to be detailed in the Proceedings of the National Academy of Sciences -- indicate that the transcription factor protein C/EBPb must be present in the uterus for pregnancy to occur. The study appears online this week at the PNAS Web site.

Without it, they say, an embryo cannot survive in uterine tissue or attach to a mother’s blood supply. Other genes also play roles, but C/EBPb is critical for implantation of an embryo, said Milan K. Bagchi, a professor of molecular and integrative physiology.

C/EBPb is scientifically known as CCAAT/Enhancer Binding Protein beta. It is regulated by the hormones estrogen and progesterone. In normal conditions, the protein, driven mostly by progesterone, is expressed rapidly and in large quantities during the critical four-day implantation period in mice, Bagchi said.

During this period, an embryo attaches to the wall of the uterus, advances into it and eventually attaches to the blood supply and forms the placenta. For a successful pregnancy to occur, stromal cells of the uterus must be transformed into decidual cells, which secrete nutrients that allow the embryo to survive until it plugs into the blood supply. C/EBPb is necessary for decidualization, the researchers discovered.

"This protein in the mouse is also in humans," Bagchi said. "We believe it plays a critical role in human pregnancy. It is expressed in the human endometrium at a time that coincides with the time of implantation. We have demonstrated very clearly in the mouse that in the absence of C/EBPb there is no decidualization. We transferred viable mouse embryos from healthy mice into mice lacking the gene, and pregnancy failed."

The project began more than four years ago. First, researchers used DNA microarrays to identify gene expression under normal and abnormal conditions during implantation. After messenger RNA profiling zeroed in on C/EBPb’s activity, the researchers collaborated with Peter F. Johnson of the National Cancer Institute’s Laboratory of Protein Dynamics and Signaling, who created mice that lacked the protein.

The experimental mice were then used to observe the relationships of the hormones and their receptors with the protein under varying conditions during the critical implantation period. In doing so, researchers determined that C/EBPb is a critical mediator of steroid hormone responsiveness in the uterus.

"This gene is expressed when the uterus is ready for embryo attachment," said co-author Indrani C. Bagchi, a professor of veterinary biosciences in the College of Veterinary Medicine at Illinois. "Its presence indicates a window for success."

If the findings are replicated in human tissue, as expected, she said, the protein’s presence could become a vital gene marker for predicting uterine readiness for pregnancy.

"The success rate for the practice of in vitro fertilization currently is, on average, about 25 percent," she said. "The major problem is that the conditions occurring when the embryo is transferred often are not the best in the uterus. It’s not known if the uterus is ready to accept an embryo, so often multiple embryos are transferred in hopes that one will attach. In future studies, confirmation of C/EBPb as a marker that correctly indicates uterine readiness for implantation in the human is likely to alleviate these shortcomings."

Other co-authors of the paper were doctoral student Srinivasa Raju Mantena, postdoctoral researchers Athilakshmi Kannan and Yong-Pil Cheon, and research scientist Quanxi Li, all in Indrani Bagchi’s veterinary biosciences laboratory.

Jim Barlow | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>