Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers discover protein fragment that helps predict breast cancer outcome

17.01.2006


Oregon Health & Science University Cancer Institute researchers have identified a protein fragment in some human breast cancers that may help predict a patient’s chances of survival.



The presence of the fragment, called p95HER-2, in breast cancer tissue correlates closely with lymph node metastasis and earlier recurrence of the disease, suggesting that p95HER-2 is a marker and perhaps even involved in metastasis.

"By studying this marker we have a better chance to identify the patients who are more likely to have a longer disease-free survival," said Edward Keenan, Ph.D., one of the authors of the study. Keenan is professor of physiology and pharmacology and associate dean for medical education, OHSU School of Medicine.


The study, conducted in the lab of Gail Clinton, Ph.D., professor of biochemistry and molecular biology, OHSU School of Medicine, in collaboration with Keenan and investigators in Spain led by Jose Baselga, M.D., will be published on Jan. 15 in Clinical Cancer Research, a journal published by the American Association for Cancer Research.

The study builds on observations the investigators have published over the last five years about the role of the HER-2 oncogene in breast cancer. HER-2, a growth factor receptor, is overexpressed in 20 to 30 percent of breast cancer cases, but it has had limited usefulness in predicting clinical outcomes, particularly in early-stage breast cancer.

Clinton’s lab identified a fragment of full-length p185HER-2 that results from HER-2 cleavage, called p95HER-2, and developed an antibody that recognized it, making it possible to study the role of p95HER-2 in the spread of breast cancer.

The researchers studied breast cancer tissue from 483 biopsies from hospitals in the United States and Spain representing all stages of the disease. Two forms of the HER-2 protein were investigated: the full-length p185HER-2 receptor and its truncated form, p95HER-2. Only the truncated form proved to be a significant independent prognostic factor regarding clinical outcomes.

"More work is needed to determine if the presence of p95 has any significance regarding responsiveness of the cancers to chemotherapy, anti-estrogen therapy or Herceptin [a drug therapy for HER-2-related metastatic breast cancer]," Keenan said. "Hopefully, understanding the significance of this marker will help us better specify effective therapy for individual patients."

Rachel MacKnight | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>