Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A FAT chance of becoming manic-depressive

16.01.2006


A collaboration, led by Sydney scientists at the Garvan Institute of Medical Research and University of New South Wales, has discovered the first risk gene specifically for bipolar disorder, also known as manic-depressive illness. This means that people who have a particular form of this gene are twice as likely to develop the disease.



Dr Ian Blair, lead author of the research paper published in Molecular Psychiatry, says: “We are the first group in the world to take a multi-faceted approach to identify a bipolar risk gene - we used a number of families, unrelated patients, and therapeutic drug mouse models. Each of these three lines of investigation led us to a gene called FAT.”

“We know that the FAT gene codes for a protein that is involved in connecting brain cells together, what we need to do now is find out exactly how the it contributes to the increased risk of bipolar disorder,” explains Dr Blair.


Bipolar disorder is a major psychiatric illness affecting around one person in every 50. Tragically, around one in six people suffering from the condition will commit suicide.

Mood-stabilising medications are typically prescribed to help control bipolar disorder. Lithium was the first mood-stabilising medication approved by the U.S. Food and Drug Administration (FDA) for treatment of mania. For decades it has been widely prescribed for the treatment bipolar disorder, yet no one knows for sure why it works.

Dr Blair’s research has raised the possibility that lithium exerts its therapeutic affect by altering FAT gene expression, as well as the expression of genes encoding FAT’s protein partners.

Lithium has a number of severe side effects that include tremor and weight gain. Kidney dysfunction may develop in a small proportion of patients when it is administered for long periods of time.

“Once we understand exactly what the FAT gene does, we will be able to develop better diagnostic tests for bipolar disorder. In the future, we hope our research will lead to new, targeted medicines specifically for bipolar disorder that don’t have the unpleasant side effects that lithium has”, says Dr Blair.

Dr. Branwen Morgan | EurekAlert!
Further information:
http://www.nature.com/doifinder/10.1038/sj.mp.4001784
http://www.garvan.org.au

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>