Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A FAT chance of becoming manic-depressive

16.01.2006


A collaboration, led by Sydney scientists at the Garvan Institute of Medical Research and University of New South Wales, has discovered the first risk gene specifically for bipolar disorder, also known as manic-depressive illness. This means that people who have a particular form of this gene are twice as likely to develop the disease.



Dr Ian Blair, lead author of the research paper published in Molecular Psychiatry, says: “We are the first group in the world to take a multi-faceted approach to identify a bipolar risk gene - we used a number of families, unrelated patients, and therapeutic drug mouse models. Each of these three lines of investigation led us to a gene called FAT.”

“We know that the FAT gene codes for a protein that is involved in connecting brain cells together, what we need to do now is find out exactly how the it contributes to the increased risk of bipolar disorder,” explains Dr Blair.


Bipolar disorder is a major psychiatric illness affecting around one person in every 50. Tragically, around one in six people suffering from the condition will commit suicide.

Mood-stabilising medications are typically prescribed to help control bipolar disorder. Lithium was the first mood-stabilising medication approved by the U.S. Food and Drug Administration (FDA) for treatment of mania. For decades it has been widely prescribed for the treatment bipolar disorder, yet no one knows for sure why it works.

Dr Blair’s research has raised the possibility that lithium exerts its therapeutic affect by altering FAT gene expression, as well as the expression of genes encoding FAT’s protein partners.

Lithium has a number of severe side effects that include tremor and weight gain. Kidney dysfunction may develop in a small proportion of patients when it is administered for long periods of time.

“Once we understand exactly what the FAT gene does, we will be able to develop better diagnostic tests for bipolar disorder. In the future, we hope our research will lead to new, targeted medicines specifically for bipolar disorder that don’t have the unpleasant side effects that lithium has”, says Dr Blair.

Dr. Branwen Morgan | EurekAlert!
Further information:
http://www.nature.com/doifinder/10.1038/sj.mp.4001784
http://www.garvan.org.au

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>