Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Particles Bring Great Benefit

13.01.2006


Chemistry teams from two universities – Lomonosov Moscow State University and Texas A&M University (USA) have improved the efficacy of pharmaceutical substance synthesis by simplifying the process. The Russian team is guided by Academician Irina Beletskaya, and the US team by Professor David Edward Bergbreiter. These two teams play on the same side because the nanoreactor concept they are using will in the long run allow to simplify in many respects chemical and pharmaceutical technology and, most importantly, to make it cleaner from the ecological point of view. The research has been sponsored by the CRDF foundation and the Federal Agency for Science and Innovation (Rosnauka).



Synthesis of biologically active molecules, such as pharmaceutical drugs, is connected with a number of complications. It is easy on paper to “assemble” chains of various atoms into required structures, but in nature, enzymes – natural catalysts – help to synthesize these substances. The synthesis can not be performed without catalysts in the laboratory and, accordingly, in the industry.

In live systems, catalysts are a natural part of these systems, which have been perfected over millions of years of evolution, to the minutest detail. However in the human body, even the best of known catalysts, such as platinum metals and palladium suffer from at least two drawbacks.


Firstly, these processes involve unsafe organic matters – dissolvents and ligands, i.e., complexing agents for catalyst metals – which are rather toxic. Secondly, separation of the product from metal is a complicated task. It is difficult to wash their traces from the drug, in the drug they are not only unneeded, but also harmful. Also, it is impossible to collect all of palladium when washing.

To solve these problems, i.e. to create such palladium nanoparticles, which would allow to synthesize necessary substances easily and quickly and would not get into the final product, will be permitted by the approach being developed by chemists under the guidance of Irina Beletskaya and David Bergbreiter. As a result of this, stable palladium particles of the size of only several nanometers may be synthesized directly in the polymeric matrix. The process will be going in the smallest pores of this matrix – tiny, extremely active particles of palladium will be formed, which in turn, will help to get reaction products from inters.

Groups of ligands (included in the polymer composition in advance) will help to retain the catalyst inside the matrix. These are “suspended”, as chemists put it, in the main chain of the polymer, where they will strongly retain metal in the matrix from which it is impossible to wash out.

It is certainly an enormous effort to develop the required polymer and to synthesize such polymers in order to choose the best ones. Rather diverse requirements need to be considered, such as the stability of palladium nanoparticles, their activity, ease of regeneration, accessibility for reagents, and freedom of movement of inters and reaction products.

On top of that, the researchers plan to investigate another approach using polymeric micellas. Palladium nanoparticles are formed in the nucleus of polymeric micellas and the target product is found at the border of phase division between the nucleus and the so-called corona of micellas. In this case, it consists of long and flexible “tails” of polyethylene oxide, which are, in contrast to the nuclei of polystyrene micellas, well-soluble in water. Constructing these micellas allows the team to carry out the reaction in water, without organic solvents, in strict compliance with the requirements of the so-called “green” (safe) chemistry. However, the researchers have polymers available that are capable to form micellas in an nonaqueous environment.

In any case, all these polymeric systems, both micellas and nanoporomeric cross-linked ones, i.e. three-dimensional polymers, will be easy to separate from the solution of obtained drug together with the harmful ligand being part of the polymer and reliably connected to it.

“The main goal of our project is to develop new efficient catalysts, which can be reused, says Academician Irina Beletskaya. With the help of these catalysts we shall be able to receive drugs not contaminated by phosphines or traces of metals, this would significantly simplify drugs’ extraction and purification and minimize organic solvent application. In the long run, our project would solve a diversity of problems connected with the synthesis of biologically important compounds from simple parent substances."

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>