Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists make first step towards ‘holy grail’ of crystallography

09.01.2006


Scientists from Imperial College London and the University of Surrey have developed a new technique for crystallising proteins, a discovery which could help speed up the development of new medicines and treatments.



Crystallisation is the process which converts materials, such as proteins, into three dimensional crystals, thus enabling their atomic structure to be studied. The three dimensional structure of the crystals indicates the proteins function, and from this, researchers hope to be able to develop more effective treatments.

However, production of high quality crystals has long posed a major bottleneck for X-ray crystallography. This problem has become increasingly acute with the advent of structural genomics and proteomics which aim to determine the structures of thousands of proteins. Protein crystallography plays a major role in this understanding because proteins, being the major machinery of living things, are often targets for drugs.


To direct the proteins to become crystals, researchers use a substance called a nucleant, which does this by encouraging protein molecules to form a crystal lattice.

The research published online in Proceedings of the National Academy of Sciences, shows how the team, consisting of bio-medical scientists, material scientists and physicists, collaborated to develop a theory concerning the design of porous materials for protein crystallisation and put it into practice. The theory is based on the rational that the porous structure of a material, traps the protein molecules, and encourages them to crystallise.

They tested the theory using BioGlass, a substance developed by Imperial’s material scientists, as a scaffold to trap and encourage the growth of protein crystals. BioGlass is a porous material, with a variety of different size pores able to trap different size proteins.

They found BioGlass induced the crystallisation of the largest number of proteins ever crystallised using a single nucleant.

Professor Naomi Chayen, from Imperial College London, who led the research, said: “The first step in obtaining a good crystal is to get it to nucleate in an ordered way. The ‘holy grail’ is to find a ‘universal nucleant’ which would induce crystallisation of any protein. Although there has been considerable research in search of a universal nucleant, this is the first time we have designed one which works on a large number of materials.”

The researchers plan to commercialise this discovery using Imperial Innovations, the College’s technology transfer company.

The study was supported by the Leverhulme Trust.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>