Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blocking the nerve receptor EP1 in mouse models reduces brain damage caused by stroke


Researchers at Johns Hopkins have discovered how to block a molecular switch that triggers brain damage caused by the lack of oxygen during a stroke. The Hopkins study, conducted on mice, is believed to be the first to demonstrate that a protein on the surface of nerve cells called the EP1 receptor is the switch, and that a specific compound, known as ONO-8713, turns it off.

The finding holds promise for the development of effective alternatives to anti-inflammatory drugs called COX inhibitors, which have potentially lethal side effects that limit their use, says Sylvain Doré, Ph.D., an associate professor in the departments of Anesthesiology and Critical Care Medicine and Neuroscience at The Johns Hopkins University School of Medicine. Doré is senior author of the paper, published in the January issue of Toxicological Sciences. "Our work has shifted the focus from drugs that inhibit COX-2 to drugs that block the EP1 receptor," Doré said.

Receptors are protein-docking sites on cells into which "signaling" molecules such as nerve chemicals or hormones insert themselves. This binding activates the receptor, which transfers the signal into the cell to produce a specific response.

COX inhibitors block the ability of the enzyme cyclooxygenase-2 (COX-2) to make prostaglandin E2 (PGE2), a hormonelike substance long linked to inflammation and other effects. The Hopkins study results suggest that PGE2 causes brain damage following stroke by binding to the EP1 receptor on nerve cells. Therefore, blocking PGE2 activity directly rather than inhibiting COX-2 could reduce brain damage in individuals who have a stroke while avoiding the side effects of COX-2 inhibitors, the Hopkins investigators say.

Previous work by others had shown that certain events, such as cerebral ischemia (stroke) and seizures, that interrupt oxygen flow to the brain also cause excessive activation of so-called NMDA receptors by the nerve chemical glutamate. Other work had suggested that activation of NMDA receptors by glutamate causes an increase in the production of COX-2, which then produces PGE2.

"A lot of the previous findings kept bringing us back to PGE2 and its receptors," Doré said. "So we investigated whether it’s possible to block the EP1 receptor so PGE2 couldn’t trigger toxic effects."

Doré’s team first injected either the EP1 blocker ONO-8713 or the EP1 stimulator, ONO-DI-004 into the ventricles (fluid-filled areas of the brain) of mice. A group of control mice received an injection of the solvent used to carry the drugs. The investigators then injected each mouse with NMDA, a drug that stimulates the NMDA receptor. Excessive stimulation of these receptors by NMDA, such as during stroke, leads to nerve cell damage.

In mice that had first received the EP1 stimulator ONO-DI-004, the area of brain damage was more than 28 percent greater than in control animals. The volume of damage in mice treated first with the EP1 blocker ONO-8713 was only about 71 percent that of controls.

"ONO-8713 significantly reduced brain damage in our mouse models following activation of a nervous-system response known to cause brain damage in humans during stroke," Doré noted.

The team next showed that in mice lacking the gene for the EP1 receptor, the volume of brain damage caused by stimulation of the NMDA receptor was only about 75 percent that of mice with the EP1 gene. This suggested that a significant part of the damage caused by activation of the NMDA receptor depends on the EP1 receptor. In addition, when the researchers injected the EP1 blocking drug ONO-8713 in mice lacking the gene for the EP1 receptor, the drug did not provide any additional protection. This suggested that ONO-8713 can exert its effect only by binding to the EP1 receptor, said Doré. "These findings demonstrate the critical role played by the EP1 receptor in brain damage caused by stroke," he added. "And they show that ONO-8713 works specifically at that receptor."

Finally, the Hopkins scientists showed that stimulation of EP1 receptors triggers the damage caused when blood flow is suddenly restored after a stroke. The team blocked blood flow in one of the main arteries feeding specific areas of the brain in mice lacking the gene for the EP1 receptor and then restored blood flow after 90 minutes. The area of brain damage (infarct size) in the mice lacking the EP1 gene was only about 57 percent of that seen in normal mice that underwent the same treatment. This provided additional evidence that brain damage caused by ischemia depends in large part on the stimulation of EP1 receptors, the researchers reported.

"Our results strongly suggest that given the side effects associated with COX inhibitors, we should focus our efforts on developing drugs that block the EP1 receptor instead of inhibiting COX-2 activity," said Doré.

Doré has applied for a patent covering the prevention and/or treatment of neurodegenerative diseases by administering agents that block the EP1 receptor.

Eric Vohr | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>