Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking the nerve receptor EP1 in mouse models reduces brain damage caused by stroke

21.12.2005


Researchers at Johns Hopkins have discovered how to block a molecular switch that triggers brain damage caused by the lack of oxygen during a stroke. The Hopkins study, conducted on mice, is believed to be the first to demonstrate that a protein on the surface of nerve cells called the EP1 receptor is the switch, and that a specific compound, known as ONO-8713, turns it off.



The finding holds promise for the development of effective alternatives to anti-inflammatory drugs called COX inhibitors, which have potentially lethal side effects that limit their use, says Sylvain Doré, Ph.D., an associate professor in the departments of Anesthesiology and Critical Care Medicine and Neuroscience at The Johns Hopkins University School of Medicine. Doré is senior author of the paper, published in the January issue of Toxicological Sciences. "Our work has shifted the focus from drugs that inhibit COX-2 to drugs that block the EP1 receptor," Doré said.

Receptors are protein-docking sites on cells into which "signaling" molecules such as nerve chemicals or hormones insert themselves. This binding activates the receptor, which transfers the signal into the cell to produce a specific response.


COX inhibitors block the ability of the enzyme cyclooxygenase-2 (COX-2) to make prostaglandin E2 (PGE2), a hormonelike substance long linked to inflammation and other effects. The Hopkins study results suggest that PGE2 causes brain damage following stroke by binding to the EP1 receptor on nerve cells. Therefore, blocking PGE2 activity directly rather than inhibiting COX-2 could reduce brain damage in individuals who have a stroke while avoiding the side effects of COX-2 inhibitors, the Hopkins investigators say.

Previous work by others had shown that certain events, such as cerebral ischemia (stroke) and seizures, that interrupt oxygen flow to the brain also cause excessive activation of so-called NMDA receptors by the nerve chemical glutamate. Other work had suggested that activation of NMDA receptors by glutamate causes an increase in the production of COX-2, which then produces PGE2.

"A lot of the previous findings kept bringing us back to PGE2 and its receptors," Doré said. "So we investigated whether it’s possible to block the EP1 receptor so PGE2 couldn’t trigger toxic effects."

Doré’s team first injected either the EP1 blocker ONO-8713 or the EP1 stimulator, ONO-DI-004 into the ventricles (fluid-filled areas of the brain) of mice. A group of control mice received an injection of the solvent used to carry the drugs. The investigators then injected each mouse with NMDA, a drug that stimulates the NMDA receptor. Excessive stimulation of these receptors by NMDA, such as during stroke, leads to nerve cell damage.

In mice that had first received the EP1 stimulator ONO-DI-004, the area of brain damage was more than 28 percent greater than in control animals. The volume of damage in mice treated first with the EP1 blocker ONO-8713 was only about 71 percent that of controls.

"ONO-8713 significantly reduced brain damage in our mouse models following activation of a nervous-system response known to cause brain damage in humans during stroke," Doré noted.

The team next showed that in mice lacking the gene for the EP1 receptor, the volume of brain damage caused by stimulation of the NMDA receptor was only about 75 percent that of mice with the EP1 gene. This suggested that a significant part of the damage caused by activation of the NMDA receptor depends on the EP1 receptor. In addition, when the researchers injected the EP1 blocking drug ONO-8713 in mice lacking the gene for the EP1 receptor, the drug did not provide any additional protection. This suggested that ONO-8713 can exert its effect only by binding to the EP1 receptor, said Doré. "These findings demonstrate the critical role played by the EP1 receptor in brain damage caused by stroke," he added. "And they show that ONO-8713 works specifically at that receptor."

Finally, the Hopkins scientists showed that stimulation of EP1 receptors triggers the damage caused when blood flow is suddenly restored after a stroke. The team blocked blood flow in one of the main arteries feeding specific areas of the brain in mice lacking the gene for the EP1 receptor and then restored blood flow after 90 minutes. The area of brain damage (infarct size) in the mice lacking the EP1 gene was only about 57 percent of that seen in normal mice that underwent the same treatment. This provided additional evidence that brain damage caused by ischemia depends in large part on the stimulation of EP1 receptors, the researchers reported.

"Our results strongly suggest that given the side effects associated with COX inhibitors, we should focus our efforts on developing drugs that block the EP1 receptor instead of inhibiting COX-2 activity," said Doré.

Doré has applied for a patent covering the prevention and/or treatment of neurodegenerative diseases by administering agents that block the EP1 receptor.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>