Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clinical trial to test stem cell approach for children with brain injury

21.12.2005


Phase I trial will gauge safety and potential of using child’s own bone marrow stem cells to treat brain trauma



A unique clinical trial will gauge the safety and potential of treating children suffering traumatic brain injury with stem cells derived from their own bone marrow starting early next year at The University of Texas Medical School at Houston and Memorial Hermann Children’s Hospital.

The clinical trial is the first to apply stem cells to treat traumatic brain injury. It does not involve embryonic stem cells.


"There is no reparative treatment for traumatic brain injury," said principal investigator Charles Cox, M.D., The Children’s Fund, Inc. Distinguished Professor in Pediatric Surgery and Trauma at the medical school. "All we can do now is try to prevent secondary damage by relieving pressure on the brain caused by the initial injury."

Unlike bone, muscle and other organs, the brain does not repair itself effectively. Traumatic brain injury victims can regain some function through rehabilitation. Studies show between 15 and 25 percent of children suffering severe traumatic brain injury die, and survivors of even moderate injury often are devastated for life.

Approved by the U.S. Food and Drug Administration and the university’s Committee for the Protection of Human Subjects (CPHS), the clinical trial builds on laboratory and animal research indicating that bone-marrow derived stem cells can migrate to an injured area of the brain, differentiate into new neurons and support cells, and induce brain repair.

"This would be an absolutely novel treatment, the first ever with potential to repair a traumatically damaged brain," said James Baumgartner, M.D., associate professor of pediatric neurosurgery and co-principal investigator on the project.

As a Phase I clinical trial, the project’s first emphasis is to establish the safety of the procedure, with a secondary goal of observing possible therapeutic effects.

Cox and Baumgartner have permission to recruit 10 head injury patients to the study between the ages of 5 and 14 who meet criteria set for enrollment. After initial treatment and evaluation, a pediatric surgeon will approach the injured child’s parents to explain the trial and request permission to enroll the child in the study.

If permission is granted, bone marrow will be extracted from the child’s hip and then processed to derive two types of progenitor stem cells: mesenchymal stem cells, which differentiate into bone, cartilage and fat cells, and research indicates can also differentiate into neurons; and hematopoietic stem cells, which form all the cells needed for blood.

Preclinical research indicates that the mesenchymal stem cells play the major role in producing new neurons and support cells.

The Center for Cell and Gene Therapy at Baylor College of Medicine will process the bone marrow into the stem cell preparation and return it to Memorial Hermann Children’s Hospital, where it will be given intravenously to the injured child.

All of this will be accomplished within 48 hours of the injury, Cox said. The children will be carefully monitored throughout for possible side effects. They will be evaluated for brain function one month and six months after the procedure to see if it is improved compared with historical data on the brain function of children of similar age who suffered a similar injury.

Safety trials involve too few patients to draw broad conclusions about the effectiveness of treatment. But they can set the stage for larger-scale research.

"All the preclinical data suggest this is a safe procedure with substantial information suggesting a possible treatment effect," Cox said.

Because the children are receiving their own cells, an immunological response to the treatment is unlikely.

Even marginal improvement could mean a great deal to someone who suffers a brain injury. "It could be the difference between being able to recognize your loved ones and not being able to, or between doing things for yourself or having to rely on others. That would be a huge impact on families and on society," Cox said.

Trauma is far and away the main cause of death and disability among children, and the main reason children die from trauma is brain injury, Cox said.

The proposal was under review for a year. The U.S. Food and Drug Administration approved Cox’s Investigational New Drug (IND) application in September. The UT-Houston CPHS, the university’s institutional review board for research projects, approved the project in November and will continue to monitor it.

The project is funded by the Memorial Hermann Foundation, internal research funds from The Office of the President at The University of Texas Health Science Center at Houston, and the National Institute of Child Health and Development and the National Heart, Lung, and Blood Institute of the National Institutes of Health.

Scott Merville | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>