Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic analysis of cavefish reveals more about evolution

21.12.2005


A multi-institutional study offers additional insight into the evolutionary process by examining how albinism evolves in cavefish. Researchers, including New York University Biology Professor Richard Borowsky, examined two populations of Mexican cavefish and found that albinism in both populations was linked to Oca2--a pigmentation gene also responsible for the most common form of albinism in humans. They observed different deletions in the gene in each population and found that both deletions cause a loss of Oca2’s functionality, demonstrating that the albinism in the two groups evolved independently. The findings are reported in the latest issue of the journal Nature Genetics.



The study also included researchers from the Harvard Medical School, the Howard Hughes Medical Institute at the Children’s Hospital of Boston, the University of Hamburg, and the University of Maryland’s Department of Biology. The research was supported by a grant from the National Science Foundation.

The replicated experiment is a powerful tool for experimental science, but typically unavailable in the study of evolution. Cave adaptations have evolved in many species independently, however, and each cave species can be considered a replicate of the same evolutionary experiment that asks how species change in perpetual darkness. A frequent outcome is that the species lose pigmentation or become albino. Cavefish, therefore, are a rich source for the examination of the evolutionary process.


In order to isolate genes’ role in the evolutionary process, the researchers examined two distinct cave-dwelling fish populations. To provide a framework in which to study the genetics of this species, they made a microsatellite linkage map, which allowed them to locate the regions of the chromosomes that had genes controlling cave related traits.

The researchers found that genetic markers for albinism in the two groups appeared in the same location, suggesting three possibilities: the two cave populations had the same mutation in the same gene, they showed different mutations in the same gene, or they had mutations in distinct but closely linked genes. To clarify their results, the researchers performed a complementation test fish in both caves, which yielded only albino offspring. They concluded that albinism in these two cave populations and in a third population not yet as well studied is caused by mutations in the same gene. Subsequent analyses revealed that Oca2 is the gene responsible for pigmentation in the cavefish and that the deletion of a specific exon, or protein- coding DNA sequence, produced albinism.

What remains a mystery is why the same gene should be mutated independently in all three populations when other genes are also known to cause albinism and why it should be the same gene that causes the most common form of albinism in humans. One possibility, suggested by the researchers, is that it is a large gene presenting a big target for mutations, and it seems to have no other functions besides helping to make melanin. Therefore, it doesn’t diminish other aspects of fitness when it is mutated.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>