Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic analysis of cavefish reveals more about evolution

21.12.2005


A multi-institutional study offers additional insight into the evolutionary process by examining how albinism evolves in cavefish. Researchers, including New York University Biology Professor Richard Borowsky, examined two populations of Mexican cavefish and found that albinism in both populations was linked to Oca2--a pigmentation gene also responsible for the most common form of albinism in humans. They observed different deletions in the gene in each population and found that both deletions cause a loss of Oca2’s functionality, demonstrating that the albinism in the two groups evolved independently. The findings are reported in the latest issue of the journal Nature Genetics.



The study also included researchers from the Harvard Medical School, the Howard Hughes Medical Institute at the Children’s Hospital of Boston, the University of Hamburg, and the University of Maryland’s Department of Biology. The research was supported by a grant from the National Science Foundation.

The replicated experiment is a powerful tool for experimental science, but typically unavailable in the study of evolution. Cave adaptations have evolved in many species independently, however, and each cave species can be considered a replicate of the same evolutionary experiment that asks how species change in perpetual darkness. A frequent outcome is that the species lose pigmentation or become albino. Cavefish, therefore, are a rich source for the examination of the evolutionary process.


In order to isolate genes’ role in the evolutionary process, the researchers examined two distinct cave-dwelling fish populations. To provide a framework in which to study the genetics of this species, they made a microsatellite linkage map, which allowed them to locate the regions of the chromosomes that had genes controlling cave related traits.

The researchers found that genetic markers for albinism in the two groups appeared in the same location, suggesting three possibilities: the two cave populations had the same mutation in the same gene, they showed different mutations in the same gene, or they had mutations in distinct but closely linked genes. To clarify their results, the researchers performed a complementation test fish in both caves, which yielded only albino offspring. They concluded that albinism in these two cave populations and in a third population not yet as well studied is caused by mutations in the same gene. Subsequent analyses revealed that Oca2 is the gene responsible for pigmentation in the cavefish and that the deletion of a specific exon, or protein- coding DNA sequence, produced albinism.

What remains a mystery is why the same gene should be mutated independently in all three populations when other genes are also known to cause albinism and why it should be the same gene that causes the most common form of albinism in humans. One possibility, suggested by the researchers, is that it is a large gene presenting a big target for mutations, and it seems to have no other functions besides helping to make melanin. Therefore, it doesn’t diminish other aspects of fitness when it is mutated.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>