Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny self-assembling cubes could carry medicine, cell therapy

14.12.2005


Porous metallic boxes can easily be tracked via MRI


(A) Optical image showing a collection of biocontainers. (B-D) Optical and Scanning electron microscopy images at different stages of the fabrication process: (B) the 2D precursor with electrodeposited surfaces, (C) the precursor with surfaces and hinges, and (D) the self-assembled biocontainer.



Johns Hopkins researchers have devised a self-assembling cube-shaped perforated container, no larger than a dust speck, that could serve as a delivery system for medications and cell therapy.

The relatively inexpensive microcontainers can be mass-produced through a process that mixes electronic chip-making techniques with basic chemistry. Because of their metallic nature, the cubic container’s location in the body could easily be tracked by magnetic resonance imaging.


The method of making these self-assembling containers and the results of successful lab tests involving the cubes were reported in a paper published in the December 2005 issue of the journal Biomedical Microdevices. In the tests, the hollow cubes housed and then dispensed microbeads and live cells commonly used in medical treatment.

"Our group has developed a new process for fabricating three-dimensional micropatterned containers for cell encapsulation and drug delivery," said David H. Gracias, who led the lab team. "We’re talking about an entirely new encapsulation and delivery device that could lead to a new generation of ’smart pills.’ The long-term goal is to be able to implant a collection of these therapeutic containers directly at the site or an injury or an illness."

Gracias is an assistant professor in the Department of Biomolecular and Chemical Engineering in the Whiting School of Engineering at Johns Hopkins. He focuses on building micro and nanosystems with medical applications. He believes the microcontainers developed in his lab could someday incorporate electronic components that would allow the cubes to act as biosensors within the body or to release medication on demand in response to a remote-controlled radio frequency signal.

To make the self-assembling containers, Gracias and his colleagues begin with some of the same techniques used to make microelectronic circuits: thin film deposition, photolithography and electrodeposition. These methods produce a flat pattern of six squares, in a shape resembling a cross. Each square, made of copper or nickel, has small openings etched into it, so that it eventually will allow medicine or therapeutic cells to pass through.

The researchers use metallic solder to form hinges along the edges between adjoining squares. When the flat shapes are heated briefly in a lab solution, the metallic hinges melt. High surface tension in the liquified solder pulls each pair of adjoining squares together like a swinging door. When the process is completed, they form a perforated cube. When the solution is cooled, the solder hardens again, and the containers remain in their box-like shape.

"To make sure it folds itself exactly into a cube, we have to engineer the hinges very precisely," Gracias said. "The self-assembly technique allows us to make a large number of these microcontainers at the same time and at a relatively low cost."

The tiny cubes are coated with a very thin layer of gold, so that they are unlikely to pose toxicity problems within the body. The microcontainers have not yet been implanted in humans or animals, but the researchers have conducted lab tests to demonstrate how they might work in medical applications.

Gracias and his colleagues used micropipettes to insert into the cubes a suspension containing microbeads that are commonly used in cell therapy. The lab team showed that these beads could be released from the cubes through agitation. The researchers also inserted human cells, similar to the type used in medical therapy, into the cubes. A positive stain test showed that these cells remained alive in the microcontainers and could easily be released.

At the Johns Hopkins School of Medicine’s In Vivo Cellular and Molecular Imaging Center, researcher Barjor Gimi and colleagues then used MRI technology to locate and track the metallic cubes as they moved through a sealed microscopic s-shaped fluid channel. This demonstrated that physicians will be able to use non-invasive technology to see where the therapeutic containers go within the body. Some of the cubes (those made mostly of nickel) are magnetic, and the researchers believe it should be possible to guide them directly to the site of an illness or injury.

The researchers are now refining the microdevices so that they have nanoporous surfaces. Gimi, whose research focuses on magnetic resonance microimaging of cell function, envisions the use of nanoporous devices for cell encapsulation in hormonal therapy. He also envisions biosensors mounted on these devices for non-invasive signal detection.

"We believe these self-assembling microcontainers have great potential as a new tool for medical diagnostics and treatment," Gracias said.

Lead author on the Biomedical Microdevices paper was Gimi, a post-doctoral fellow in the Russell H. Morgan Department of Radiology and Radiological Science in the Johns Hopkins School of Medicine. Gracias served as senior author. Co-authors were Timothy Leong, a doctoral student in the Johns Hopkins Department of Biomolecular and Chemical Engineering; Zhiyong Gu, a postdoctoral fellow in the Department of Biomolecular and Chemical Engineering; Michael Yang, an undergraduate majoring in biomedical engineering; Dmitri Artemov, an associate professor in the Department of Radiology; and Zaver M. Bhujwalla, a professor in the Department of Radiology and director of the In Vivo Cellular and Molecular Imaging Center.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>