Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Computer-chemistry’ yields new insight into a puzzle of cell division


Duke University biochemists aided by Duke computer scientists and computational chemists have identified the likely way two key enzymes dock in an intricate three-dimensional puzzle-fit to regulate cell division. Solving the docking puzzle could lead to anticancer drugs to block the runaway cell division behind some cancers, said the researchers.

Significantly, their insights arose not just from meticulous biochemical studies, but also from using sophisticated simulation techniques to perform "chemistry in the computer."

In a paper published Nov. 24, 2005 online in the journal Biochemistry, members of the interdisciplinary collaboration described how they discovered the probable orientation required for a Cdc25B phosphatase enzyme to "dock" with and activate a cyclin-dependent kinase protein complex that also functions as an enzyme, known as Cdk2-pTpY--CycA. The work was funded by the National Institutes of Health.

Detailed study of such docking is important because uncontrolled overreaction of the Cdc25 family of enzymes has been associated with the development of various cancers. Anti-cancer drugs that jam the enzyme, preventing its docking with the kinase, could halt cell over proliferation to treat such cancers. However, developing such drugs has been hampered by lack of detailed understanding of how the Cdc25s fit with their associated kinases.

"To me this is the culmination of my six years here at Duke," said Johannes Rudolph, the Duke assistant professor of chemistry and biochemistry who led the research. "It’s very exciting. I think it’s a really hard problem."

A successful docking between the two enzymes not only requires the "active sites" -- where chemical reactions occur --on the phosphatase and the kinase to link precisely, Rudolph said. The two molecules’ component parts, or "residues," must also orient in a tongue-and-groove fit at a few other special places, which the researchers dubbed ’hot spots," on the irregular molecular surfaces.

Only when active sites and hot spots fit correctly can this brief docking accomplish its role in the cell division cycle, said Rudolph. That biochemical role is for the enzyme to remove the phosphates from two phosphate-bearing amino acids on the protein.

Those removals alter electrical charges in a way that allows the protein to pick up other phosphate-containing chemical groups to pass along as part of a molecular bucket brigade.

Rudolph initially knew the kinase’s and phosphatase’s general topographies as well as the locations of their active sites. "But it was literally a guessing game trying to find which residues might be important in this interaction," he said.

"Somehow these two large complicated molecules had to also interact specifically somewhere other than the site where the chemistry occurs."

Biochemists traditionally answer such questions by laboriously making "mutant" versions of a protein in which a single residue is altered and lab-testing whether the resulting subtle change in the protein’s shape or chemistry changes the way the molecules interact with each other, he said. If there is no change, they then move on to the next residue.

"So my students started to make these mutants randomly and test their activities, one at a time," Rudolph said. "Each of these experiments is pretty hard, and pretty tedious."

After this trial-and-error search remained fruitless, Rudolph, his graduate students Jungsan Sohn, Kolbrun Kristjansdottir and Alexias Safi and his post-doctoral investigator Gregory Burhman began collaborating with a team led by computer science and mathematics professor Herbert Edelsbrunner.

Edelsbrunner, who has developed techniques and computational programs for modeling and analyzing complex molecular shapes, used a large cluster of computers and custom software to analyze about one thousand trillion different conceivable shape match-ups between the molecules.

That initial mega-analysis reduced the potential molecular combinations to about 1,000 possibilities, which Rudolph called both "encouraging" and "discouraging."

Edelsbrunner’s group, which included programmer Paul Brown, then began narrowing that search further. They did so by using a different software program that could identify the highest and lowest places on the molecules’ surfaces, and where "highest" on one might fit into the "deepest" on the other. "That’s not easy, because there is no point of reference on those complicated shapes," Rudolph said.

The researchers finally winnowed the possibilities to what Rudolph called "one reasonable guess" by enlisting another Duke group led by chemistry professor Waitao Yang.

Wang’s team, including his graduate student Jerry Parks, uses another bank of computers to calculate how components of molecules behave in small spaces -- in this case "how they wiggle," Rudolph said. By allowing both molecules to move -- as they would in the real world -- the researchers could evaluate whether match-ups that looked right when motionless were actually off the mark.

"Tiny little shifts can change these things," Rudolph said.

The interdisciplinary group’s Biochemistry paper, whose first author was Rudolph’s graduate student Sohn, confirmed the calculations with extensive biochemical evaluations of the two hot spot residues the study identified, one residue on the phosphatase and the other on the kinase. Both hot spots are located some distance from the molecules’ active sites, Rudolph noted.

Overexpression of the Cdc25 group of enzymes has been associated with the development of numerous cancers. But "drug discovery targeting these phosphatases has been hampered by lack of structural information about how Cdc25s interact with their native protein substrates," the authors wrote in their Biochemistry paper.

With the study’s results in hand, scientists can now search for potential inhibiting drug molecules shaped so they can overlap -- and thus interfere -- with the active sites as well as outlying hot spots the research identified, Rudolph said.

He credited the study’s success to the power of interdisciplinary scientific collaborations, noting that he and Edelsbrunner initially met "by coincidence" in Duke’s Levine Science Research Center building, where they both have separate labs in separate wings.

Monte Basgall | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>