Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a protein responsible for shaping the nervous system

08.12.2005


A team of researchers led by The Hospital for Sick Children (SickKids), the University of Toronto (U of T) and Cold Spring Harbor Laboratory have discovered a protein that is responsible for shaping the nervous system. This research was made possible with the support of a $1.5-million NeuroScience Canada Brain Repair ProgramTM team grant that enabled scientists from across Canada to work together and fast track their research. This research is reported in the December 8, 2005 issue of the journal Neuron.



"We discovered that p63 is the major death-promoting protein for nerve cells during fetal and post-natal development," said Dr. David Kaplan, the paper’s senior author, senior scientist at SickKids, professor of Molecular Genetics, Medical Genetics & Microbiology at U of T, Canada Research Chair in Cancer and Neuroscience, and co-team leader on the NeuroScience Canada Brain Repair Program grant with Dr. Freda Miller of SickKids. "Proteins such as p63 that regulate beneficial cell death processes during development may cause adverse affects later in life by making us more sensitive to injury and disease."

At birth, the nervous system has twice the number of nerve cells than needed. The body disposes of the excess cells by eliminating those that go to the wrong place or form weak or improper connections. If this process does not happen, the nervous system cannot function properly. The expression of the p63 protein guides the nervous system in disposing of the ineffective nerve cells. The protein is from the p53 family of tumour suppressor proteins that is mutated in many human cancers.


While p63 is involved in determining which nerve cells die, the research team also suspects that it determines whether nerve cells die when injured or in neurological and neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases.

"The discovery of this new protein represents hope for thousands of people affected by neurological and neurodegenerative disorders, such as multiple sclerosis, Parkinson’s, Alzheimer’s and schizophrenia, as well as spinal cord injury," says the Honourable Michael H. Wilson, Chair of NeuroScience Canada, a national umbrella organization for neuroscience research, whose Brain Repair Program helped support this research. "Because this protein is responsible for the death of nervous systems cells, understanding how we could inhibit its functions could represent survival for many patients across Canada."

Ten million Canadians of all ages will be affected by a disease, disorder or injury of the brain, spinal cord or nervous system. These conditions number more than 1,000. Fifty per cent of all Canadians -- about 15 million people -- have had a brain disorder impact their family. Based on Health Canada data, the economic burden of these disorders is conservatively estimated at 14 per cent of the total burden of disease, or $22.7 billion annually; however, when disability is included, the economic burden reaches 38 per cent or more, according to the World Health Organization. However, despite the magnitude of the problem, neuroscience research, with just $100 million total in operating grants in Canada annually, is still greatly under funded in this country.

To this end, future research for the research team involves testing whether p63 is the key protein that determines whether nerve cells die when injured or in neurodegenerative diseases, and will identify drugs that will prevent p63 from functioning that may be used to treat these conditions.

Other members of the research team include Dr. Freda Miller, Canada Research Chair in Developmental Neurobiology, Dr. W. Bradley Jacobs, Daniel Ho and Dr. Fanie Barnabe-Heider, all from SickKids, Dr. William Keyes and Dr. Alea Mills from Cold Spring Harbor Laboratory in Cold Spring Harbor, New York, and Dr. Jasvinder Atwal and Dr. Gregory Govani of Dr. Miller’s and Kaplan’s former group from McGill University.

Chelsea Gay | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>