Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a protein responsible for shaping the nervous system

08.12.2005


A team of researchers led by The Hospital for Sick Children (SickKids), the University of Toronto (U of T) and Cold Spring Harbor Laboratory have discovered a protein that is responsible for shaping the nervous system. This research was made possible with the support of a $1.5-million NeuroScience Canada Brain Repair ProgramTM team grant that enabled scientists from across Canada to work together and fast track their research. This research is reported in the December 8, 2005 issue of the journal Neuron.



"We discovered that p63 is the major death-promoting protein for nerve cells during fetal and post-natal development," said Dr. David Kaplan, the paper’s senior author, senior scientist at SickKids, professor of Molecular Genetics, Medical Genetics & Microbiology at U of T, Canada Research Chair in Cancer and Neuroscience, and co-team leader on the NeuroScience Canada Brain Repair Program grant with Dr. Freda Miller of SickKids. "Proteins such as p63 that regulate beneficial cell death processes during development may cause adverse affects later in life by making us more sensitive to injury and disease."

At birth, the nervous system has twice the number of nerve cells than needed. The body disposes of the excess cells by eliminating those that go to the wrong place or form weak or improper connections. If this process does not happen, the nervous system cannot function properly. The expression of the p63 protein guides the nervous system in disposing of the ineffective nerve cells. The protein is from the p53 family of tumour suppressor proteins that is mutated in many human cancers.


While p63 is involved in determining which nerve cells die, the research team also suspects that it determines whether nerve cells die when injured or in neurological and neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases.

"The discovery of this new protein represents hope for thousands of people affected by neurological and neurodegenerative disorders, such as multiple sclerosis, Parkinson’s, Alzheimer’s and schizophrenia, as well as spinal cord injury," says the Honourable Michael H. Wilson, Chair of NeuroScience Canada, a national umbrella organization for neuroscience research, whose Brain Repair Program helped support this research. "Because this protein is responsible for the death of nervous systems cells, understanding how we could inhibit its functions could represent survival for many patients across Canada."

Ten million Canadians of all ages will be affected by a disease, disorder or injury of the brain, spinal cord or nervous system. These conditions number more than 1,000. Fifty per cent of all Canadians -- about 15 million people -- have had a brain disorder impact their family. Based on Health Canada data, the economic burden of these disorders is conservatively estimated at 14 per cent of the total burden of disease, or $22.7 billion annually; however, when disability is included, the economic burden reaches 38 per cent or more, according to the World Health Organization. However, despite the magnitude of the problem, neuroscience research, with just $100 million total in operating grants in Canada annually, is still greatly under funded in this country.

To this end, future research for the research team involves testing whether p63 is the key protein that determines whether nerve cells die when injured or in neurodegenerative diseases, and will identify drugs that will prevent p63 from functioning that may be used to treat these conditions.

Other members of the research team include Dr. Freda Miller, Canada Research Chair in Developmental Neurobiology, Dr. W. Bradley Jacobs, Daniel Ho and Dr. Fanie Barnabe-Heider, all from SickKids, Dr. William Keyes and Dr. Alea Mills from Cold Spring Harbor Laboratory in Cold Spring Harbor, New York, and Dr. Jasvinder Atwal and Dr. Gregory Govani of Dr. Miller’s and Kaplan’s former group from McGill University.

Chelsea Gay | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>