Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists discover immune response to HIV differs, even in identical twins

08.12.2005


In findings illustrating the difficulty of developing an AIDS vaccine, UCLA AIDS Institute researchers report the immune systems in two HIV-positive identical twins responded to the infection in different ways.



Detailed in the Dec. 5 issue of the peer-reviewed Journal of Virology, the findings show that the body’s defenses against the virus are random rather than genetically determined.

The researchers followed the cases of male twins who were infected shortly after their 1983 births in Los Angeles by blood transfusions administered from the same donor at the same time. Infected with the same strain of the virus, the twins continue to live in the Los Angeles area and grew up exposed to the same environmental forces.


Yet their T-cell receptors (TCR) reacted differently in each twin, showing that the body’s defense response was random--and unpredictable. TCRs play an important role in the immune system by binding viruses and other antigens to receptors on their surface, killing the invader. HIV escapes this action by changing shape so that it does not fit into those receptors.

"These boys are as similar as two humans can be, yet we see differences in how they fight the virus," said Dr. Paul Krogstad, professor of pediatrics and pharmacology, and one of the researchers. "That’s one more thing that makes it difficult to develop a vaccine for everyone."

When a virus invades a body, the cellular immune response targets small parts of proteins in the virus. This targeting mechanism itself is genetically determined. ". The virus tries to escape that immune response by mutating and changing shape.

The twins’ targeting of the HIV was remarkably similar 17 years after infection yet their overall TCR characteristics were highly divergent. The finding, demonstrates that the interaction between their immune systems and the virus was random and unpredictable--indicating that a "one size fits all" vaccine may not be possible.

"If the goal is to develop a vaccine, our findings suggestthis may not be so straightforward," said Dr. Otto Yang, associate professor of infectious diseases at the David Geffen School of Medicine at UCLA, and the study’s lead researcher.

According to the UCLA researchers, the results of this study have broader implications, and could apply to other viruses such as cytomegalovirus (CMV), a herpes virus that causes opportunistic infections in immunosuppressed individuals, and hepatitis C, the latter being similar to HIV in both its changeable and chronic nature.

The study represented collaboration with other UCLA investigators and with Joseph Church of Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California. Other researchers from the UCLA AIDS Institute and the David Geffen School of Medicine who contributed to the study are Ryan Kilpatrick, Ayub Ali, Yongzhi Geng, M. Scott Killian, Rachel Lubong Sabado, Hwee Ng, Jeffrey Suen, Yvonne Bryson, Beth D. Jamieson; and Christina M.R. Kitchen, associate professor of biostatistics, UCLA School of Public Health.

Enrique Rivero | EurekAlert!
Further information:
http://www.mednet.ucla.edu
http://jvi.asm.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>