Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulation shows buckyballs deform DNA

08.12.2005


Soccer-ball-shaped "buckyballs" are the most famous players on the nanoscale field, presenting tantalizing prospects of revolutionizing medicine and the computer industry. Since their discovery in 1985, engineers and scientists have been exploring the properties of these molecules for a wide range of applications and innovations. But could these microscopic spheres represent a potential environmental hazard?



A new study published in December 2005 in Biophysical Journal raises a red flag regarding the safety of buckyballs when dissolved in water. It reports the results of a detailed computer simulation that finds buckyballs bind to the spirals in DNA molecules in an aqueous environment, causing the DNA to deform, potentially interfering with its biological functions and possibly causing long-term negative side effects in people and other living organisms.

The research, conducted at Vanderbilt by chemical engineers Peter T. Cummings and Alberto Striolo (now a faculty member at the University of Oklahoma), along with Oak Ridge National Laboratory scientist Xiongce Zhao, employed molecular dynamics simulations to investigate the question of whether buckyballs would bind to DNA and, if so, might inflict any lasting damage. "Safe is a difficult word to define, since few substances that can be ingested into the human body are completely safe," points out Cummings, who is the John R. Hall Professor of Chemical Engineering and director of the Nanomaterials Theory Institute at Oak Ridge National Laboratory.


"Even common table salt, if eaten in sufficient quantity, is lethal. What we are doing is looking at the mechanisms of interaction between buckyballs and DNA; we don’t know yet what actually happens in the body," he says.

Surprising findings

Despite the caveat, Cummings suggests that his research reveals a potentially serious problem: "Buckyballs have a potentially adverse effect on the structure, stability and biological functions of DNA molecules."

The findings came as something of a surprise, despite earlier studies that have shown buckyballs to be toxic to cells unless coated and to be able to find their way into the brains of fish. Before these cautionary discoveries, researchers thought that the combination of buckyballs’ dislike of water and their affinity for each other would cause them to clump together and sink to the bottom of a pool, lake, stream or other aqueous environment. As a result, researchers thought they should not cause a significant environmental problem.

Cummings’ team found that, depending on the form the DNA takes, the 60-carbon-atom (C60) buckyball molecule can lodge in the end of a DNA molecule and break apart important hydrogen bonds within the double helix. They can also stick to the minor grooves on the outside of DNA, causing the DNA molecule to bend significantly to one side. Damage to the DNA molecule is even more pronounced when the molecule is split into two helices, as it does when cells are dividing or when the genes are being accessed to produce proteins needed by the cell.

"The binding energy between DNA and buckyballs is quite strong," Cummings says. "We found that the energies were comparable to the binding energies of a drug to receptors in cells."

It turns out that buckyballs have a stronger affinity for DNA than they do for themselves. "This research shows that if buckyballs can get into the nucleus, they can bind to DNA," Cummings says. "If the DNA is damaged, it can be inhibited from self-repairing."

Computer simulations

The computer simulations showed that buckyballs make first contact with the DNA molecule after one to two nanoseconds. Once the C60 molecules bind with the DNA, they remained stable for the duration of the simulation.

Researchers tested the most common forms of DNA, the "A" and "B" forms. The "B" form is the most common form. In a stronger saline solution, or when alcohol is added, the DNA structure can change to the "A" form. A third, rarer form, "Z," occurs in high concentrations of alcohol or salt and was not tested.

The researchers found that buckyballs docked on the minor groove of "A" DNA, bending the molecule and deforming the stacking angles of the base pairs in contact with it. The simulations also showed that buckyballs can penetrate the free end of "A" form DNA and permanently break the hydrogen bonds between the end base pair of nucleotides.

As expected, the buckyballs bound most strongly to single helix DNA, causing the most deformation and damage. While buckyballs did bind to "B" form double-strand DNA, the binding did not affect the overall shape of the DNA molecule. More research needed

What the researchers don’t know is whether these worrisome binding events will take place in the body. "Earlier studies have shown both that buckyballs can migrate into bodily tissues and can penetrate cell membranes," Cummings says. "We don’t know whether they can penetrate a cell nucleus and reach the DNA stored there. What this study shows is that if the buckyballs can get into the nucleus they could cause real problems. What are needed now are experimental and theoretical studies to demonstrate whether they can actually get there. Because the toxicity of nanomaterials like buckyballs is not well known at this point, they are regarded in the laboratory as potentially very hazardous, and treated accordingly."

Vivian Cooper | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>