Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open Source Biotechnology alliance to map the patent maze and build new technologies for crop improvement.

08.12.2005


CAMBIA & IRRI (The International Rice Research Institute) today announced a major joint venture to advance the BiOS Initiative - a new strategy that will galvanize agricultural research focused on poverty alleviation and hunger reduction. The venture is catalyzed by a 2.55M USD grant to CAMBIA from The Ministry of Foreign Affairs of Norway.



The BiOS Initiative – Biological Innovation for Open Society – is often called Open Source Biotechnology. The BiOS model has resonance with the Open Source software movement, famous for such successful efforts as Linux. Open Source software has spurred faster innovation, greater community participation, and new robust business models that break monopolies and foster fair competition. BiOS targets parallel challenges that limit the effective use of modern life sciences in agriculture to only a few multinational corporations.

“New technologies are increasingly tangled in complex webs of patent and other legal rights, and are usually tailored for wealthy countries and well-heeled scientists,” said IRRI’s Director General, Robert Zeigler. “Half the world depends on rice as a staple food – but this also means half the world’s potential innovators could be brought to bear on the challenges of rice production, given the right toolkits – and the rights to use them”.


In the joint work, CAMBIA’s Patent Lens, already one of the most comprehensive costfree full-text patent databases in the world, will be extended to include patents in major rice-growing countries, including China, Korea, and India. These same countries are growing powerhouses of innovation, poised to play lead roles in the next generation of biological problem solving.

The Patent Lens will also develop analyses and foster the capacity in the developing world to create patent maps of the key emerging technologies that could be constrained by complex intellectual property rights worldwide, including the rice genome itself.

These patent ‘landscapes’ will be used to guide the development of improved technology toolkits in a new, inclusive manner. Says Richard Jefferson, CAMBIA’s CEO, “It’s not so much about getting access to old patented technology – it’s about forging collaborations to develop better, more powerful tools within a ‘protected commons’ to get different problem solvers to the table.” These could for example be tools for precise, natural genetic enhancements, using non-GM approaches (for example, homologous recombination), new plant breeding methods such as marker assisted selection, or even true breeding hybrids of crop species that would allow farmers in developing countries to use hybrid seed year after year.

Adds Jefferson, “Scientists and farmers need better options for problem solving, that meet their priorities, work within their constraints, build on their ingenuity, and maintain their independence; this is what BiOS is all about.”

IRRI, an autonomous international institute based in Los Banos, The Philippines, is one of the foundation institutions of the CGIAR (Consultative Group on International Agricultural Research), and is dedicated to improving the lives and livelihoods of resource poor rice producers and consumers worldwide. IRRI has been at the forefront of rice research for almost thirty years, delivering new rice varieties and practices to rice farmers throughout Asia and the developing world. Now, rice has become the model system for grain crops worldwide, with its entire DNA sequence known; but the ‘mining’ – and patenting - of this genetic resource and the possibility that the tools to improve it could be restricted by broad patents has raised legitimate concerns that must be met head-on.

CAMBIA, based in Canberra Australia, is an independent non-profit institute that invents and shares enabling technologies and new practices for life sciences and intellectual property management to further social equity. CAMBIA is the founder of the BiOS Initiative (www.bios.net), the Patent Lens (www.patentlens.net) and the online collaboration platform BioForge(www.bioforge.net). CAMBIA published the first explicit ‘open source’ biotechnology toolkit in the Journal “Nature” in February 2005. Included in that publication was the technology ‘TransBacter’ in which the technique of plant gene transfer by Agrobacterium, covered by hundreds of patents, was bypassed using other symbiotic bacteria to add beneficial genes to rice and other plants. This and other technologies have been made freely available under BiOS licenses.

Work by IRRI, CAMBIA scientists, and others in an online collaboration community, will optimize this process and other open source enabling technologies, ensuring their availability to scientists throughout the developed and developing world.

Stephanie Goodrick | alfa
Further information:
http://www.bios.net
http://www.cambia.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>