Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence for expanded color vision for some colorblind individuals

06.12.2005


Some forms of colorblindness may actually afford enhanced perception of some colors, according to findings reported this week in Current Biology by John Mollon and colleagues at the University of Cambridge.



The most common form of colorblindness is an X-chromosome-linked variant form of color vision technically known as deuteranomaly. Colors are detected by humans through the combined action of three different types of so-called cone photoreceptors, each of which is optimally activated by different wavelengths of light. These sensitivities are altered in deuteranomalous colorblind individuals because they possess a variant form of one of the cone photoreceptors--the sensitivity of cones that should be "middle-wave" is shifted toward that of "long-wave" cones, resulting in decreased ability to differentiate between some colors that are easily distinguishable by those with normal color vision. In theory, however, it is possible that owing to the altered sensitivities of their cone photoreceptors, deuteranomalous individuals may be sensitive to color differences that are not apparent to those with normal color vision.

In the new work, researchers tested this idea by asking deuteranomalous and "color-normal" individuals to report whether they were able to distinguish between pairs of colors that were theoretically predicted to look different to deuteranomalous colorblind individuals but to appear the same to those with normal color vision. Indeed, the researchers found that some color pairs were only seen to be different by deuteranomalous individuals. The finding suggests that although these individuals may be blind to some colors accessible by color-normal individuals, they also have a sensitivity to a "color dimension" that is inaccessible to those with normal color vision. In their paper, the researchers remark that "[f]or a color-normal experimenter, it was striking to watch a deuteranamolous subject giving large difference ratings to apparently identical stimuli, and doing so without hesitation."


The researchers point out that because deuteranamolous colorblindness is caused by an X-chromosome-linked genetic alteration, and because women randomly inactivate one of their two X chromosomes in each of their cells, women who are carriers of the deuteranamoly trait (and hence have one normal X chromosome) are predicted to express four types of cone photoreceptor--the three normal cone types, as well as the cone with a shifted wavelength sensitivity. Thought it is unclear whether this would appreciably affect color vision in a way that allows expanded color sensitivities without the colorblindness experienced by deuteranamolous individuals, a test similar to that utilized in the present study could potentially be used to test this possibility.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>