Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence for expanded color vision for some colorblind individuals

06.12.2005


Some forms of colorblindness may actually afford enhanced perception of some colors, according to findings reported this week in Current Biology by John Mollon and colleagues at the University of Cambridge.



The most common form of colorblindness is an X-chromosome-linked variant form of color vision technically known as deuteranomaly. Colors are detected by humans through the combined action of three different types of so-called cone photoreceptors, each of which is optimally activated by different wavelengths of light. These sensitivities are altered in deuteranomalous colorblind individuals because they possess a variant form of one of the cone photoreceptors--the sensitivity of cones that should be "middle-wave" is shifted toward that of "long-wave" cones, resulting in decreased ability to differentiate between some colors that are easily distinguishable by those with normal color vision. In theory, however, it is possible that owing to the altered sensitivities of their cone photoreceptors, deuteranomalous individuals may be sensitive to color differences that are not apparent to those with normal color vision.

In the new work, researchers tested this idea by asking deuteranomalous and "color-normal" individuals to report whether they were able to distinguish between pairs of colors that were theoretically predicted to look different to deuteranomalous colorblind individuals but to appear the same to those with normal color vision. Indeed, the researchers found that some color pairs were only seen to be different by deuteranomalous individuals. The finding suggests that although these individuals may be blind to some colors accessible by color-normal individuals, they also have a sensitivity to a "color dimension" that is inaccessible to those with normal color vision. In their paper, the researchers remark that "[f]or a color-normal experimenter, it was striking to watch a deuteranamolous subject giving large difference ratings to apparently identical stimuli, and doing so without hesitation."


The researchers point out that because deuteranamolous colorblindness is caused by an X-chromosome-linked genetic alteration, and because women randomly inactivate one of their two X chromosomes in each of their cells, women who are carriers of the deuteranamoly trait (and hence have one normal X chromosome) are predicted to express four types of cone photoreceptor--the three normal cone types, as well as the cone with a shifted wavelength sensitivity. Thought it is unclear whether this would appreciably affect color vision in a way that allows expanded color sensitivities without the colorblindness experienced by deuteranamolous individuals, a test similar to that utilized in the present study could potentially be used to test this possibility.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>