Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights Into Protein Synthesis and Hepatitis C Infections

05.12.2005


Scientists have uncovered key new information towards understanding the crucial first step in protein synthesis, the process by which the genetic code, harbored within DNA and copied into RNA, is translated into the production of proteins. This new information also helps to explain how viruses, such as Hepatitis C, are able to highjack protein synthesis machinery in humans for their own purposes.



Biochemist Jennifer Doudna and biophysicist Eva Nogales, both of whom hold joint appointments with the Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California at Berkeley, and the Howard Hughes Medical Institute (HHMI), led a study in which cryo electron microscopy (cryo-EM) was used to create a 3-D model of the protein complex called eukaryotic translation initiation factor 3 (eIF3). The model showed that the eIF3 protein complex employs the same structural mechanics in the loading of either human or viral RNA to ribosomes, the complex machinery in living cells responsible for protein synthesis.

“This is the first insight into how the initiation mechanisms of protein synthesis work specifically for humans, and a step towards understanding at the molecular level what happens when a viral infection occurs,” said Doudna, a member of Berkeley Lab’s Physical Biosciences Division. “A better understanding of these mechanisms could open the door to new and improved therapies for viral infections.”


Said Nogales, also a member of Berkeley Lab’s Physical Biosciences Division, “Using cryo-EM, we can reconstruct images of the entire protein ensemble to study the molecular machinery behind the protein synthesis process. We now have the tools to see how the many different parts of the molecular machinery come together.”

The results of this study are in the December 2, 2005 issue of the journal Science, in a paper entitled: Structural Roles for Human Translation Factor eIF3 in Initiation of Protein Synthesis. Co-authoring the paper with Doudna and Nogales were Bunpote Siridechadilok and Christopher Fraser of UC Berkeley, and Richard Hall of Berkeley Lab.

Proteins, the curiously-shaped macromolecules that serve as the basic construction material of all living cells, and also initiate and control nearly all cell chemistry, are assembled out of amino acids according to the instructions contained within the genes. These genetic instructions are carried from the DNA inside a cell’s nucleus out into the cell’s cytoplasm via messenger RNA (mRNA). There the information will be translated to a sequence of amino acids via the ribosome, an ancient organelle so highly conserved by evolution that its core components are pretty much the same for all forms of life.

Protein synthesis in mammalian cells begins with the loading of mRNA onto the small ribosome subunit, 40S, which is, in part, one of the responsibilities of the eIF3 complex. The eIF3 complex also interacts with other translation elements that bind at the start of the mRNA, prevents premature joining of the 40S and 60S ribosomal subunits, and helps assemble active ribosomes. Until now, the structural basis for eIF3’s multiple activities has been unknown.

At a resolution of 30 angstroms, the cryo-EM reconstructions of Doudna and Nogales and their collaborators show eIF3 to be a particle consisting of five lobes - analogous to a head, and a pair of arms and legs. The study shows that the left arm of the eIF3 complex binds to the eukaryotic protein complex that recognizes the methylated guanosine cap at the 5’-end of the eukaryotic mRNAs (mRNA consists of a coding region sandwiched between a 5’-end and a 3’-end). By drawing the mRNA’s 5’-end cap through the ribosome entry site and towards the exit, eIF3 ensures the mRNA is properly positioned for its genetic code to be translated.

Acting like a molecular wrestler, eIF3 will also wrap its arms and legs around a structural element of RNA for the hepatitis C virus (HVC), known as the internal ribosome entry site (IRES), and pin it to the exit site of the 40S ribosome subunit. The IRES leaves through the left arm of the eIF3 complex at the same location where interaction with the human mRNA cap-binding complex takes place.

“This might explain the amazing ability of the HVC IRES to hijack the human ribosome and its associated translation factors,” said Doudna.

Said Nogales, “The position of eIF3 in our models also provides a plausible explanation for its role in preventing premature joining of the 40S and 60S ribosome subunits.”

Doudna and members of her research group are now working to improve the resolution of these models from 30 angstroms to about 10 angstroms. This would allow them to see secondary protein structures which would give them a better understanding of the chemistry behind eIF3’s structural mechanics.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov/Science-Articles/Archive/LSD-protein-synthesis.html
http://www.lbl.gov

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>