Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue biologists clarify how a cellular ’spacecraft’ opens its airlock

05.12.2005


Scientists have a tough time visualizing the tiny hatchways that allow nutrients to pass into our cells, but a group of Purdue University biologists may have found the next best thing: a glimpse into the workings of the "motor" that opens and closes them.


This graphic illustrates the process by which a membrane protein opens and closes, as envisioned by Jue Chen’s research team at Purdue University. ABC proteins, which are the inner portion of a membrane protein, function like tiny tweezers and are powered by ATP, a chemical that animal cells use for energy transport. When the tweezers squeeze shut, the outer section of the membrane protein opens to reveal a small cavity that can hold a nutrient or other substance the cell requires from the outside. Once the nutrient is there, the cell uses water to signal the "tweezers" to relax, closing the membrane protein gate and capturing the nutrient. Lastly, the membrane protein releases the nutrient into the cell’s interior. (Purdue graphic/Chen labs)



A research team led by Jue Chen has clarified the connection between these minuscule gates – which are called membrane transport proteins – and the steps by which they use a cell’s energy to permit or deny materials entry into the interior of the cell from the outside world.

In what the team perceives to be a three-step process, cells feed chemical energy to a tiny machine called an ABC protein, which is the part of the membrane protein that connects it to the interior of the cell. These ABC proteins use the energy to bend the membrane protein into its open and closed positions, allowing the cell both to bring in nutrients and to flush out waste.


"We think we have a better handle on a process fundamental to life in creatures from bacteria to humans," said Chen, who is an assistant professor of biology in Purdue’s College of Science. "This is the first time the entire cycle has been visualized, and this could enhance our understanding of how the process of metabolism unfolds."

The team’s paper appears in this week’s issue of Proceedings of the National Academy of Sciences. Chen’s group also includes her Purdue colleagues Gang Lu and James M. Westbrooks, as well as Amy L. Davidson, who recently relocated to Purdue from the Baylor College of Medicine. The team used X-ray crystallography and other advanced imaging techniques to obtain a clear picture of the ABC protein, a method which has only had limited success in revealing secrets of the membrane proteins themselves.

Membrane proteins in cells have been likened to spacecraft airlocks, which ensure that only the astronauts gain entry and no air is lost. Where spacecraft have metal walls, cells have membranes that surround their inner protoplasm, and their airlock proteins are highly complex individual molecules that allow nutrients to enter cells and waste products to leave them.

Of the thousands of membrane proteins that exist, scientists only know the structure of a few dozen. They are of great interest to biologists because, as the regulators of intercellular commerce, they essentially permit metabolism – and, thus, life itself – to continue. However, while most proteins dissolve in water and can be easily crystallized and examined, membrane proteins dissolve only in fatty substances, making it difficult to isolate them for study.

"If we had a better understanding of this class of proteins, we might know more about how our bodies use and transfer energy," Chen said. "It’s an unfortunate gap in our knowledge of how living things work. But in this study, we looked at a protein that is a bit of a hybrid: one part of it is fat-soluble, and the other is water-soluble."

Because the entire membrane protein would not submit to crystallization, Chen’s team focused their efforts on the ATP-binding cassette proteins, or ABC proteins for short, that connect the membrane proteins with the cell’s interior. This portion of the protein is of the more study-friendly, water-soluble variety, and also plays a critical role in cellular commerce: It is the motor that drives a membrane protein’s motion.

"We isolated the ABC proteins from an E. coli bacterium, which is a very common research subject," Chen said. "Different as these single-celled organisms are, their ABC proteins are structurally very similar to those in human cells, so studying them could help our knowledge of our own metabolism."

ABC proteins function like tiny tweezers and are powered by ATP, a chemical that animal cells use for energy. When ATP causes the tweezers to squeeze shut, the membrane proteins open to reveal a small cavity that can hold a nutrient or other substance the cell requires from the outside. Once the nutrient is in place, the cell uses water to break down the ATP, signaling the "tweezers" to relax, closing the membrane protein gate and capturing the nutrient. Lastly, the membrane protein releases the nutrient into the cell’s interior.

"The ABC protein is like the inner door of the airlock; that’s what we were able to see in operation in this study," Chen said. "If you opened both it and the membrane protein simultaneously, nothing would stop the interior of the cell from getting sucked out."

Chen admits that the team is not yet certain that the description of the process is complete, though it does seem compelling based on what science already knows about the workings of membrane proteins.

"We need to look closer at our information and try to find out more," Davidson said. "We will be applying several tests to our data in the near future to determine if our image of these proteins accurately describes their behavior."

Chen said the work might have long-term payoffs in the fight against cancer, though it was too soon to make more than general statements as to how.

"Many cancer cells are resistant to anticancer drugs because the ABC proteins are overabundant and get too good at pumping the drugs out before they can work," she said. "Future therapies might exploit what we are finding out about these proteins’ operation. It’s too soon to talk about specific therapies, but because there are so many kinds of cancer out there, every piece of knowledge helps."

This research was sponsored in part by the National Institutes of Health and the Pew Charitable Trusts.

Members of Chen’s research group are associated with the Purdue Cancer Center. One of just seven National Cancer Institute-designated basic-research facilities in the United States, the center attempts to help cancer patients by identifying new molecular targets and designing future agents and drugs for effectively detecting and treating cancer. The Cancer Center is part of the Oncological Sciences Center in Purdue’s Discovery Park.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Jue Chen, (765) 496-3113, chenjue@purdue.edu

Amy Davidson, (765) 494-5291, adavidso@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>