Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking the memory trace

05.12.2005


Memory formation follows a dynamic pattern, allowing for retrieval from different areas of the brain, depending on when an organism needs to remember, said a researcher at Baylor College of Medicine.



That is what Dr. Ron L. Davis, professor of molecular and cellular biology at BCM, theorizes, based on his most recent report on the topic that finds a memory trace in Drosophila or fruit flies is formed in a pair of neurons called the dorsal pair medial neurons, but only 30 minutes after the fact and only through the mediation of a gene called, ironically, amnesiac. (A memory trace is a chemical change in tissue that represents the formation of a memory.) The study appears in the current issue of the journal Cell.

Davis and his colleagues were one of the first to actually record a memory trace being formed. That one was first stored in the insect’s antennal lobe (where odors are processed). The flies are trained to associate an odor with an electric shock. The change in these neurons was immediate, but lasted only five to seven minutes.


In the more recent report involving the DPM neurons, the change can be seen 30 minutes after the formation of the memory, but it lasts about two hours.

"The other intriguing thing we don’t understand is that this occurs only in one branch of the DPM neuron," said Davis. "Our impression now is that maybe what guides the behavior after training in the first few minutes is the antennal lobe. That is the important part that guides behavior for the small window of time after training. The DPM neurons have that role from 30 minutes to two hours."

The finding belies the commonly held precept that a memory is formed in the same way that data are stored in a computer – always in the same place.

"It’s not as if we are forming memories that are then being written to a "hard disk" area of the brain, and it’s there and recalled from the same location at any time after learning," said Davis. "We now think that different areas of the brain have dominion over small intervals of time after training. One area might have dominion and then another." Others who participated in the research include Drs. Dinghui Yu and Anjana Srivatsan, both of BCM, and Scott Waddell and graduate student Alex Keene, of the University of Massachusetts Medical Center.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>