Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon-rich molecules ’supersized’

05.12.2005


A University of Oregon chemist has "supersized" carbon-rich molecules, enabling researchers for the first time to test theories about the useful properties of synthetic forms of carbon. The discovery by Mike Haley will be published as the cover story in the Dec. 9 edition of the Journal of Organic Chemistry (JOC). The article also appears on the JOC website.



Scientists have long predicted that unnatural forms of carbon could have many technologically useful properties, much like those found for the natural phases of carbon, which are graphite and diamond. Haley’s research seeks to prove those predictions are true and to do so, the new carbon materials must be of sufficient size to observe their properties.

"’Supersizing’ fragments of unnatural carbon has enormous implications for determining future applications because certain properties can only be realized at much larger dimensions," said Haley. At a diameter of five to six nanometers (a nanometer is a billionth of a meter) the new disk-shaped molecules are more than twice the size of the one-to-two nanometer pieces previously developed by Haley’s team. For instance, Haley explains that molecules of polystyrene used for Styrofoam cups are rigid because of their large size. At much smaller molecule sizes, however, the same material is a viscous liquid. "Size is important," he said.


Haley and doctoral student Jeremiah Marsden were able to produce several different supersized molecules by using acetylene subunits to link benzene anchors to form the giant networks. The expanded molecules have a high density of pi-electrons that are extremely useful for electronics and optics. Haley said the most promising application for the new material is in optical electronics and, specifically, switches used in telecommunications. Haley’s group is collaborating with researchers at the University of Michigan to test the strength, reliability, and durability of the new material.

Mike Haley is a professor of chemistry and a member of the university’s Materials Science Institute. His research was funded by a grant from the National Science Foundation.

Kathy Madison | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>