Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poison + water = hydrogen. New microbial genome shows how

05.12.2005


From a Russian volcanic island, a hot new find



Take a pot of scalding water, remove all the oxygen, mix in a bit of poisonous carbon monoxide, and add a pinch of hydrogen gas. It sounds like a recipe for a witch’s brew. It may be, but it is also the preferred environment for a microbe known as Carboxydothermus hydrogenoformans.

In a paper published in the November 27th issue of PLoS Genetics, a research team led by scientists at The Institute for Genomic Research (TIGR) report the determination and analysis of the complete genome sequence of this organism. Isolated from a hot spring on the Russian volcanic island of Kunashir, this microbe lives almost entirely on carbon monoxide. While consuming this normally poisonous gas, the microbe mixes it with water, producing hydrogen gas as waste.


As the world increasingly considers hydrogen as a potential biofuel, technology could benefit from having the genomes of such microbes. "C. hydrogenoformans is one of the fastest-growing microbes that can convert water and carbon monoxide to hydrogen," remarks TIGR evolutionary biologist Jonathan Eisen, senior author of the PLoS Genetics study. "So if you’re interested in making clean fuels, this microbe makes an excellent starting point."

In sequencing the microbe’s genome, Eisen and his collaborators discovered why C. hydrogenoformans grows more rapidly on carbon monoxide than other species: The bug boasts at least five different forms of a protein machine, dubbed carbon monoxide deyhydrogenase, that is able to manipulate the poisonous gas. Each form of the machine appears to allow the organism to use carbon monoxide in a different way. Most other organisms that live on carbon monoxide have only one form of this machine. In other words, while other organisms may have the equivalent of a modest mixing bowl to process their supper of carbon monoxide, this species has a veritable food processor, letting it gorge on a hot spring buffet all day.

"The findings show the continued value of microbial genome sequencing for exploring the useful capabilities of the vast realm of microbial life on Earth," says Ari Patrinos, director of the Office of Biological and Environmental Research, part of the U.S. Department of Energy’s (DOE) Office of Science. DOE, which funded the study, is pursuing clean fuel technologies.

Little was known about this hydrogen-breathing organism before its genome sequence was determined. By utilizing computational analyses and comparison with the genomes of other organisms, the researchers have discovered several remarkable features. For example, the genome encodes a full suite of genes for making spores, a previously unknown talent of the microbe. Organisms that make spores have attracted great interest recently because this is a process found in the bacterium that causes anthrax. Sporulation allows anthrax to be used as a bioweopon because the spores are resistant to heat, radiation, and other treatments.

By comparing this genome to those of other spore-making species, including the anthrax pathogen, Eisen and colleagues identified what may be the minimal biochemical machinery necessary for any microbe to sporulate. Thus studies of this poison eating microbe may help us better understand the biology of the bacterium that causes anthrax.

Building off this work, TIGR scientists are leveraging the information from the genome of this organism to study the ecology of microbes living in diverse hot springs, such as those in Yellowstone National Park. They want to know what types of microbes are found in different hot springs--and why. To find out, the researchers are dipping into the hot springs of Yellowstone, Russia, and other far-flung locales, to isolate and decipher the genomes of microbes found there.

"What we want to have is a field guide for these microbes, like those available for birds and mammals," Eisen says. "Right now, we can’t even answer simple questions. Do similar hot springs, a world apart, share similar microbes? How do microbes move between hot springs? Our new work will help us find out."

Kathryn Brown | EurekAlert!
Further information:
http://www.tigr.org/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>