Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watch your step when the going gets rough

05.12.2005


Placing your foot accurately is a complicated process. If something moves where you plan to place your foot then you can adjust your step while your foot is swinging through. Experts thought previously that if nothing changed in the path, or in your plans, then the place where your foot will land is fixed before it even leaves the ground. In this case, you would make no use of immediate visual information during each step.



Researchers monitored the accuracy with which subjects could step onto a target. In 50% of the attempts they blocked subjects’ vision just at the point when they were lifting their foot off the ground. On the occasions when vision was blocked, the subjects were less able to step accurately on the target.

“Because vision was blocked only after the foot had left the floor, this research shows that we use visual information to adjust our footfall while our foot is moving forwards – it is not simply predetermined at the beginning of the step,” says Dr Raymond Reynolds, who along with Dr Brian Day conducted the work at the Institute of Neurology, Queen Square, London. The research is published this week in the Journal of Physiology.


This research models the sort of situation people encounter when rambling over rough terrain, where they need to accurately place their feet on well defined targets. Getting it right may avoid your slipping or twisting an ankle. “This visual guidance mechanism could also help gymnasts on the beam, or acrobat walkers on a tightrope, as in these situations accurate foot placement becomes crucial,” says Reynolds.

Carol Huxley | alfa
Further information:
http://www.blackwell-synergy.com
http://www.physoc.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>