Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Commercial Opportunity In Molecular Docking Software

01.12.2005


One of the most important stages in the drug discovery process is the ability to determine binding sites on proteins for potential ligands.


Ligand Docking



When attempting to find the correct pose of a protein-ligand complex, there are an infinite number of possible solutions. The position, geometry and conformation of a ligand are all continuous variables - this leads to the “Docking Problem”. To explore all possible docking modes, an enormous amount of calculation must be done - the complexity, of this task may be reduced by adopting a multi-scale approach. In this approach the accuracy is not sacrificed.

There are currently several docking algorithms, which address the “Docking Problem”, two of which are:
· GOLD


· OXDOCK

However, traditional methods are limited because:

· The lack of accuracy, when estimating the docking pose, results in an inability to accurately estimate the interaction of a ligand and protein.

· They lack the speed that is necessary to investigate many possible solutions in a reasonable amount of time.

Researchers at the University of Oxford have developed a molecular docking program, which addresses these problems. The key features and advantages of this docking algorithm are:

· A multi-scale approach to simplify and speed up the initial stages of molecular docking
The geometry of the entire ligand is fixed after three points are defined and thus after this stage, the entire molecule is docked to make the calculations more accurate.

· Evolutionary programming, which employs the concept of natural selection to find the optimum solution.

The advantage of an evolutionary approach is that it provides a method to find optimal solutions to complex problems without resorting to an exhaustive search.

The Oxford Invention provides a program that will optimise ligand molecules and a scoring function that accurately describes the binding of ligands to proteins. These are developed in tandem, yielding an algorithm that is accurate, precise, specific, and a distinct improvement, in many ways, on traditional methods..

Dr Anthony Lewis | alfa
Further information:
http://www.isis-innovation.com/licensing/2496

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>