Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular molecule spurs growth of prostate cancer

30.11.2005


May provide target for treatment, study shows



University of North Carolina at Chapel Hill scientists have identified a molecule that stimulates the aggressive growth of prostate cancer. The molecule, Ack1, a member of the growth-promoting tyrosine kinase gene family, stimulates tumor formation in part by signaling prostate cells to rid themselves of a tumor-suppressor protein. Normally, this suppressor protein would inhibit rapid cell growth by signaling the cell to destroy itself.

A report on the study, which appeared Nov. 15 in the journal Cancer Research, also points to Ack1 as a potential target for developing novel drugs against prostate cancer.


The study’s senior author, Dr. Shelton Earp, directs the UNC Lineberger Comprehensive Cancer Center and is Lineberger professor of cancer research and a professor of pharmacology and medicine.

Tests of Ack1 demonstrate a profound effect on tumor growth in experimental systems, Earp said. "It’s a remarkable effect. Tumors grew more rapidly and invaded as if they were converted to advanced prostate cancer."

Another major finding of the study involved an experimental drug developed by the National Cancer Institute, called geldanamycin. In laboratory tests, the UNC Lineberger group found Ack1 activity could be inhibited through interference with its molecular interactions, thus offering a target for treatment. First, the group discovered that Ack1 bound to a protein called Hsp90 (heat shock protein 90), which associated with many oncogenic, or cancer-causing, signaling proteins.

"If you add geldanamycin to the prostate cancer cell, the drug knocks Hsp90 off oncogenic signaling molecules. This dramatically decreases Ack1 activity and slows tumor formation," Earp said.

In addition, the team compared Ack1 activation in advanced prostate cancer tissue from patients with that found in benign prostatic hypertrophy, or non-cancerous prostate enlargement. The team showed the levels of the activated Ack1 to be much higher in the advanced tumors.

In earlier work, Earp’s UNC laboratory was the first to clone a cell surface tyrosine kinase, Mer.

"We saw that Mer was expressed at reasonably high levels in prostate cancer cells. And so Dr. Nupam Mahajan, the study’s first author, decided to look at whether Mer had an effect on prostate cancer growth signaling," Earp said.

In experiments, which used the university’s Michael Hooker Proteomics Core Facility, the team discovered that Mer activated Ack1. This finding led to the current study.

"Because we found Ack1 is more active in advanced prostate tumors, and its inhibition blocks experimental tumor growth, we believe Ack1 should be a target for novel drug development."

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>