Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular molecule spurs growth of prostate cancer

30.11.2005


May provide target for treatment, study shows



University of North Carolina at Chapel Hill scientists have identified a molecule that stimulates the aggressive growth of prostate cancer. The molecule, Ack1, a member of the growth-promoting tyrosine kinase gene family, stimulates tumor formation in part by signaling prostate cells to rid themselves of a tumor-suppressor protein. Normally, this suppressor protein would inhibit rapid cell growth by signaling the cell to destroy itself.

A report on the study, which appeared Nov. 15 in the journal Cancer Research, also points to Ack1 as a potential target for developing novel drugs against prostate cancer.


The study’s senior author, Dr. Shelton Earp, directs the UNC Lineberger Comprehensive Cancer Center and is Lineberger professor of cancer research and a professor of pharmacology and medicine.

Tests of Ack1 demonstrate a profound effect on tumor growth in experimental systems, Earp said. "It’s a remarkable effect. Tumors grew more rapidly and invaded as if they were converted to advanced prostate cancer."

Another major finding of the study involved an experimental drug developed by the National Cancer Institute, called geldanamycin. In laboratory tests, the UNC Lineberger group found Ack1 activity could be inhibited through interference with its molecular interactions, thus offering a target for treatment. First, the group discovered that Ack1 bound to a protein called Hsp90 (heat shock protein 90), which associated with many oncogenic, or cancer-causing, signaling proteins.

"If you add geldanamycin to the prostate cancer cell, the drug knocks Hsp90 off oncogenic signaling molecules. This dramatically decreases Ack1 activity and slows tumor formation," Earp said.

In addition, the team compared Ack1 activation in advanced prostate cancer tissue from patients with that found in benign prostatic hypertrophy, or non-cancerous prostate enlargement. The team showed the levels of the activated Ack1 to be much higher in the advanced tumors.

In earlier work, Earp’s UNC laboratory was the first to clone a cell surface tyrosine kinase, Mer.

"We saw that Mer was expressed at reasonably high levels in prostate cancer cells. And so Dr. Nupam Mahajan, the study’s first author, decided to look at whether Mer had an effect on prostate cancer growth signaling," Earp said.

In experiments, which used the university’s Michael Hooker Proteomics Core Facility, the team discovered that Mer activated Ack1. This finding led to the current study.

"Because we found Ack1 is more active in advanced prostate tumors, and its inhibition blocks experimental tumor growth, we believe Ack1 should be a target for novel drug development."

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>