Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery by researchers at Stockholm University: Substance that knocks out anthrax

29.11.2005


Researchers at Stockholm University have found a substance that quickly knocks out the anthrax bacterium. The bacterium has been used in terrorist attacks in the US and Japan, for example.



The scientists have identified the enzyme in the bacterium that makes it multiply. The substance N-hydroxylamine arrests the enzyme, and the bacterium stops growing.

“An anthrax infection in the lungs develops very rapidly and must be stopped as quickly as possible. This can be done by combining the substance N-hydroxylamine with ordinary antibiotics that work more slowly,” says Professor Britt-Marie Sjöberg, Department of Molecular Biology and Functional Genomics.


Medicine is actively looking for ways to effectively and inexpensively treat segments of the population that are exposed to anthrax spores, which cause extremely severe symptoms and/or are multi-resistant.

The discovery may play a major role in enhancing our preparedness for possible terrorist attacks, for instance. What’s more, the scientists behind the study show that it is possible to find substances that effectively knock out corresponding enzymes in other similar pathogenic organisms.

“The fact that we have identified a chemically simple and commercially available substance with these properties is of great significance both practically and in terms of further research,” adds Britt-Marie Sjöberg.

The findings are being published in the scientific journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) on November 28, www.pnas.org. The authors are Eduard Torrents, Margareta Sahlin, Professor Britt-Marie Sjöberg, Department of Molecular Biology and Functional Genomics; Professor Astrid Gräslund, Department of Biochemistry and Biophysics; and Daniele Biglino, now at the Max Planck Institute in Mülheim an der Ruhr, Germany.

Maria Sandqvist | alfa
Further information:
http://www.eks.su.se

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>