Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Student scientists create living bacterial photographs


Using Petri dishes full of genetically engineered E. coli instead of photo paper, students at The University of Texas at Austin and UCSF successfully created the first-ever bacterial photographs.

Their work is published in this week’s issue of Nature (Nov. 24, 2005), which is devoted entirely to the emerging field of synthetic biology.

The students produced the innovative bacterial images and a bacterial camera as part of MIT’s intercollegiate Genetically Engineered Machine (iGEM) competition, which encourages students to build simple biological machines.

"The goal of the contest was to build bacteria that could do very simple computing," says Dr. Edward Marcotte, one of the students’ faculty advisers and associate professor of biochemistry at The University of Texas at Austin. "This is a great example of the emergent field of synthetic biology--using principles of engineering in biology."

"We’re making bacteria that are all independently functioning computers and we can get them to do large-scale, complex computations like make images or create circuits," says Jeff Tabor, a doctoral student at the Institute for Cell and Molecular Biology in Austin.

The students produced ghostlike, living photos of many things, including themselves, their advisers and The University of Texas Tower.

The bacterial photos were created by projecting light on "biological film"--billions of genetically engineered E. coli growing in dishes of agar, a standard jello-like growth medium for bacteria.

Like pixels on a computer screen switching between white and black, each bacterium either produced black pigment or didn’t, based on whether it was growing in a light or dark place in the dish. The resulting images are a collection of all the bacteria responding to the pattern of light.

E. coli are found naturally in the dark confines of the human gut and wouldn’t normally sense light, so the students had to engineer the unicellular machines to work as a photo-capturing surface.

UCSF biophysics graduate student Anselm Levskaya and his adviser, Dr. Chris Voigt, first engineered the bacteria to sense light by adding a light receptor protein from a photosynthetic blue-green algae to the E. coli cell surface. They hooked the light receptor up to a sensor in E. coli that normally senses salt concentration. Instead of sensing salt, the bacteria could sense light.

The light receptor was then connected to a system in the bacteria that makes pigments. When light strikes the new receptor, it turns off a gene that ultimately controls the production of a colored compound in the bacteria.

The Texas students, including Tabor and Aaron Chevalier, realized that after optimizing the pigments and agar growth media, these bacteria could be used to convert light images shined onto the bacteria into biochemical prints. To create the photographs, the Texas students used a unique light projector largely designed and built by Chevalier, a physics undergraduate.

The device projects the pattern of light--like an image of one of the Texas students’ co-advisers, Dr. Andy "Escherichia" Ellington--onto the dish of bacteria growing at body temperature in an incubator. After about 12-15 hours of exposure (the time it takes for a bacterial population to grow and fill the Petri dish), the light projector is removed.

What’s left is a living photograph.

Bacteria in the lighted regions of the Petri dish don’t produce the pigment and appear light. Those in the dark regions produce pigment and appear dark.

The biological technologies these students are building could be applied in a variety of ways beyond making photos, says Marcotte. For example, he says the techniques could one day be used to build different tissues based on patterns of light or make bacteria that can produce structures useful in medical treatments.

The students are already busy on their next innovation--bacteria that can find and create a line around the edges of an image, a process that requires the bacteria to communicate with each other.

They’re also working on experiments using a laser to turn on and off single cells, which would give them great control.

"If we can hit the cell with a laser, we can manipulate their biology without needles or syringes," says Tabor. "We just turn it on or off with light."

Other students and researchers who participated in the project were Laura Lavery, Zachary Booth Simpson, Matthew Levy, Eric Davidson and Alexander Scouras. Faculty advisers were Ellington and Marcotte at The University of Texas at Austin and Voigt at UCSF.

Edward Marcotte | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>