Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of Fear Factor Makes Timid Mouse Bold

21.11.2005


Researchers have identified a fear factor - a protein the brain uses to generate one of the most powerful emotions in humans and animals. The molecule is essential for triggering both the innate fears that animals are born with - such as the shadow of an approaching predator - as well as fears that arise later in life due to individual experiences. Eliminating the gene that encodes this factor makes a fearful mouse courageous. The finding, the researchers say, suggests new approaches for drugs designed to treat conditions such as phobias, post-traumatic stress disorder, and anxiety.



Working in mice, the scientists, led by Howard Hughes Medical Institute investigator Eric R. Kandel at Columbia University, found that the protein stathmin is critical for both innate and learned fear. Mice without stathmin boldly explore environments where normal mice would be hesitant, and, unlike their normal counterparts, fail to develop a fear of cues that have been associated with electric shock. The scientists also found physiological changes in the brains of mice lacking stathmin that correlate to the behavioral changes they observed.

The work, published in the November 18, 2005 issue of the journal Cell, was carried out by lead author Gleb Shumyatsky, a postdoctoral fellow from Kandel’s lab who is now at Rutgers University, and other scientists from Columbia, Rutgers, Harvard Medical School, and Albert Einstein College of Medicine.


Both humans and animals are born with an innate fear of certain threatening stimuli. As an example, Kandel said, “If you see a train heading right at you, you get scared and run away. This is built into the genome - the capability to respond to natural threat.” Furthermore, when researchers pair a naturally frightening stimulus, such as an electric shock, with a neutral signal, such as a tone, animals develop fear of the neutral tone. “That is called learned fear - that’s acquired, it’s a form of learning,” Kandel explained. In humans, stage fright, phobias, and post traumatic stress disorders are examples of learned fear.

In previous work, Kandel and his colleagues set out to determine the underlying mechanisms that encode fear in the brain. “We knew from other people’s work about the neural pathways involved,” Kandel said, “but there was little knowledge of the key genes or the detailed neural circuitry involved. So we thought we would tackle that problem.”

The researchers began their studies by searching for genes that were particularly active in the amygdala, a region deep within the brain known to contribute to fear and other emotions. They zeroed in on the lateral nucleus, the portion of the amygdala that receives information from the rest of the body about fearful stimuli. They dissected out individual pyramidal cells, the principal cells in the lateral nucleus, and found two genes, known as gastrin-releasing peptide (GRP) and stathmin, that were much more active in the lateral nucleus than in a part of the brain not thought to be involved in fear, which the researchers analyzed for comparison.

Several years ago, Kandel, Shumyatsky, and their colleagues studied the first of these genes, GRP, in detail and found that it encodes a protein that inhibits the fear-learning circuitry in the brain. GRP does not, however, play a role in innate fear — demonstrating that the two fear pathways are genetically distinct.

When the scientists moved on to study stathmin, they had few clues as to what role it might play in fear - if it was involved at all. “When you go after a gene like this, you have no idea what behavior or biological process it may be involved in,” Kandel said. “I think it’s the mystery of the thing that creates part of the excitement. Except for thinking that the amygdala was very likely to be involved, we had no way of knowing what the outcome would be.”

An indication that stathmin might contribute to fear came when they mapped the parts of the brain where the gene was most active. They found that stathmin was highly expressed not only in the amygdala, but also in other parts of the brain’s fear circuitry. “It was localized not only in the pathway of the learning process, but also in the pathway of instinctive fear,” Kandel noted.

To investigate stathmin’s role in more detail, the researchers created mice lacking that gene, and examined the brain activity in the lateral nucleus of their amygdalas. Recent work from other labs had shown that during fear learning, the connections between the neurons in this part of the brain strengthen. In stathmin-deficient mice, however, the connections between these neurons remained virtually unchanged, despite repeated stimulation.

These results were good indications that stathmin might play a role in learned fear. To determine whether a lack of stathmin actually altered animals’ behavior in situations likely to trigger fear, the scientists used several standard laboratory tests. Mice were trained to associate an electric shock with either an auditory tone or a particular location in a cage. After the training period, normal mice would freeze when they encountered the tone or location that they’d learned was likely to accompany a shock. Stathmin-deficient mice, on the other hand, seemed unnerved by those stimuli, carrying on their normal activities boldly, without fear.

From these experiments, it was clear to the scientists that stathmin was needed for fear learning. To find out whether it might also contributed to innate fear, the scientists took advantage of mice’s natural fear of open spaces. Unlike normal mice, which cower on the edges of an open field and stay near the center of a plus-shaped maze, mice without stathmin were much more adventurous, readily exploring exposed areas.

The authors concluded from their experiments that stathmin is required for both innate and learned fear. Together with his lab’s previous work on GRP, Kandel said, the work advances the understanding or learned fear versus instinctive fear in several ways. “It shows genetically there’s a fundamental difference between the two; it gives you some insight into the neural circuitry; it shows that there’s an inhibitory constraint to fear; and it gives you the potential of thinking of therapeutic targets.”

As drug targets, Kandel said, GRP and stathmin each present unique opportunities. “One would be for learned anxiety, the other would be for instinctive. They both, I think, are reasonable - no one has worked on those as targets before.” While drugs targeting stathmin would likely affect both types of fear, Kandel expects that with further work, researchers should also be able to identify genes that act exclusively on instinctive fear.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>