Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer gel can block toxic leakage problem in gene therapy

21.11.2005


The evidence shows glowing viruses concentrated in the liver of a "control" animal not receiving the poloxamer mixture. In contrast, the viruses stayed in the tumor of an animal injected with the polymer.


Duke University biomedical engineers have devised a potentially patentable method to arrest toxic leakages of genetically engineered viruses that have plagued attempts to use gene therapy against cancerous tumors. The problem has been that viruses carrying anti-tumor genes have tended to leak from tumors, proving toxic to other body tissues.

The researchers have developed a biocompatible polymer that briefly changes from a liquid at 39 degrees Fahrenheit to a gel at body temperatures to block most gene-bearing viruses from being diverted through the blood stream to the wrong targets, the scientists reported in research journals.

"With this method we can reduce the misdirected virus dissemination by a factor of 100 to 1,000 times," said Fan Yuan, an associate biomedical engineering professor at Duke’s Pratt School of Engineering who led the studies. "That’s enough of a reduction to solve the problem."



The work was supported by the National Science Foundation.

According to Yuan, about 66 percent of the 918 gene therapy clinical trials conducted in 24 countries between 1989 and 2004 were aimed at treating cancer.

His interdisciplinary group from the Pratt School and the Duke Medical Center’s radiation oncology department studied a preferred kind of anti-cancer gene therapy that uses relatively harmless adenoviruses to infect tumor cells. Once in a targeted tumor, genes in these genetically modified viruses are designed to express their modified genes to manufacture proteins that can either trigger tumor cell death or stimulate the immune system to attack the cancer.

Yuan said he and other Duke researchers have found that, because of the small size of pores in blood vessel walls and other access points, these adenoviruses cannot reach the majority of tumor cells by being injected into the blood stream but instead must be injected directly into tumors themselves.

However, direct intratumoral injection can cause the gene-bearing viruses to escape their intended target and pose risks elsewhere, the researchers found in a study the researchers reported in the April 2005 issue of the British Journal of Cancer.

In that study, the researchers injected adenoviruses that produce glowing proteins in order to trace where the viral particles went during 24 hours after being injected into breast tumors implanted in experimental mice.

That investigation showed that 10 times more of the viral particles were transported to other organs than were retained within the tumors. And most of the errant viruses ended up in the liver, where the gene therapy protein products could cause cell death. Moreover, most viruses escaped from their intended tumor targets during the first 10 minutes.

Prompted by reports of animal deaths during past gene therapy trials with adenoviruses, this study provided the first direct research evidence that therapeutic gene-bearing viruses were being disseminated away from the tumor site via the blood stream, Yuan said. "In the past people wouldn’t admit that," he said. "Nobody in the gene therapy field would believe this was happening."

The study also pinpointed the routes for the viral escapes. Those particles were escaping from the tumor area into the bloodstream through rifts in tiny tumor blood vessels created by damage from the injection needle.

Yuan said such viral escapes are inevitable since the needle’s diameter is 30 times larger than the width of the microvessels that supply the tumor with blood. The needle is also wider than the spaces between each of those vessels, he added.

The first author of the British Journal of Cancer study was Yuan’s graduate student Yong Wang. Other authors included Yuan, Yuan’s research associate Ava Krol, associate research professor of radiation oncology Chuan-Yuan Li, and radiation oncology research associates Shanling Liu and Takashi Kon.

In a followup study in the September 2005 issue of the journal Cancer Research the researchers proposed a solution to the viral escape problem in the form of a polymer compound already employed for wound healing and for drug and gene delivery.

After being mixed with a gene-bearing virus, this compound -- called poloxamer 407 -- undergoes a temporary phase change as its stiffens from a liquid to a gel state when warmed to body temperature, that study reported.

This 1,000-fold viscosity change only lasts 10 to 90 minutes, long enough to clog the escape route for large numbers of viruses so those will link up with and infect tumor cells instead, Yuan said.

The Duke team found the polymer-virus mixture "could reduce virus dissemination by two orders of magnitude (100 times) and significantly increase transgene expression in solid tumors," their study reported.

In comparative tests on breast tumors implanted in live mice, the authors noted that two mice in the group injected with adenoviruses without poloxamer died within a half hour after administration. "But mice in the poloxamer group did not show any problem," they wrote.

Additional studies using the glowing protein to trace viral dissemination showed that "the poloxamer solution could significantly reduce the transgene expression in the liver and increase the transgene expression in the tumor," they reported.

Yuan said he has applied for a provisional patent covering this new use of poloxamer 407, which his group purchased from the BASF Corp.

In 2003, Yuan, Wang, Krol, Li and other Duke researchers previously reported that another chemical extracted from common brown algae can also block toxic leakages from tumor injections when mixed with the adenoviruses. However, the high viscosity of that jello-like mixture made it hard to inject.

"The bottom line is that when people try to do gene therapy on cancer they must inject the genes into the tumor," Yuan said. "One way would be to try and inject the genes into the bloodstream. But that won’t work because the virus particles are too large to get through to the tumor.

"Therefore, the only choice is to inject the viral particles directly into the tumor. But when you do that, we have demonstrated that dissemination elsewhere is inevitable. The result is that more will reach normal tissue than be left in the tumor. And that may cause all kinds of toxicity problems.

"In our first new paper we demonstrated the mechanism of this dissemination. And in the second paper we developed a solution to block it."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>