Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Nose Is Good, but The Sensor Is Better, Or Chemists From Voronezh Are On Guard Of Health

21.11.2005


Sensitive and durable sensors for determination of hydrogen sulfide concentration in the air were developed by chemists of the Voronezh State Technological Academy in collaboration with their colleagues from the Smolensk production association “Analitpribor”. Based on commercially available piesoelectric resonators, these sensors will reliably protect workers’ health by letting know that the poison concentration in the air has approached a dangerous boundary.



At first sight it seems that nature has provided for protection from the harmful gas. A human nose is able to catche hydrogen sulphide (according to the manual’s definition, the substance that strongly reeks) in absolutely tiny quantities when the gas concentration in the air is expressed in the thousandths of milligram per cubic meter. But the paradox is that this particular sensitivity of the nose can let us down: when the hydrogen sulphide concentration is approaching the maximum allowable value impending chronic desease of respiratory tract, blood, eyes, skin and digestive apparatus, the smell seems weaker to us. This is a kind of olfactory illusion.

The device developed by the Voronezh chemists will help to fight this illusion. It should be noted that researchers from the group under the guidance of Professor Yakov Kornman have learned to produce quite a variety of sensors based on microweighing of the air mixture analyte. They are based on the so-called piesoelectric resonators. These are devices the main component of which is a quartz plate covered by a special layer, vibrating at a strictly determined frequency under the influence of imressed voltage.


If we manage to find such a materiel for this covering that could efficiently and, most importantly, selectively sorb (extract and retain) molecules of a certain substance from the air, then a peculiar scales is obtained. The covering grows heavier due to analyte molecules “caught” from the air and begins to vibrate at a new frequency, the value of which depends on the quantity of analyzable compound accumulated in the coating material.
The task has to be solved anew for each new substance – the material should be found to selectively and efficiently extract a certain substance from the mixed gas. Every time the problem is successfully solved by the group under the guidance of Ya. I. Korenman and his colleague, Doctor of Science (Chemistry) Tatiana Kuchmenko. The problem was solved for hydrogen sulphide by development of an appropriate sensitive and selective sensor.

It is interesting to note that as a receptor covering – the layer on the surface of the quartz plate – the authors used various materials, including beeswax, which showed pretty good results. One of the best modifiers turned out to be the so-called apiezon wax – something like dense lubricant or resin. To make it adhere well to the quartz surface, the researchers suggest that it should be preliminarily processed by the polystyrene or starch solution.

Produced in strict compliance with such method, the sensors will be able to determine the hydrogen sulphide content in the air for 80 thousand times. Then the sensors can be replaced, and the old ones can be simply thrown away – this is an expandable and relatively low-cost material. The concept, its scientific and practical development is expensive. All that has been already done by the chemists. Now the production is pending – and them automatic devices will be constantly supervising the hydrogen sulphide concentration in workrooms, thus protecting the health of workers for whom, as Ford rightly remarked, no spare parts were provided for by nature.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>