Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Nose Is Good, but The Sensor Is Better, Or Chemists From Voronezh Are On Guard Of Health

21.11.2005


Sensitive and durable sensors for determination of hydrogen sulfide concentration in the air were developed by chemists of the Voronezh State Technological Academy in collaboration with their colleagues from the Smolensk production association “Analitpribor”. Based on commercially available piesoelectric resonators, these sensors will reliably protect workers’ health by letting know that the poison concentration in the air has approached a dangerous boundary.



At first sight it seems that nature has provided for protection from the harmful gas. A human nose is able to catche hydrogen sulphide (according to the manual’s definition, the substance that strongly reeks) in absolutely tiny quantities when the gas concentration in the air is expressed in the thousandths of milligram per cubic meter. But the paradox is that this particular sensitivity of the nose can let us down: when the hydrogen sulphide concentration is approaching the maximum allowable value impending chronic desease of respiratory tract, blood, eyes, skin and digestive apparatus, the smell seems weaker to us. This is a kind of olfactory illusion.

The device developed by the Voronezh chemists will help to fight this illusion. It should be noted that researchers from the group under the guidance of Professor Yakov Kornman have learned to produce quite a variety of sensors based on microweighing of the air mixture analyte. They are based on the so-called piesoelectric resonators. These are devices the main component of which is a quartz plate covered by a special layer, vibrating at a strictly determined frequency under the influence of imressed voltage.


If we manage to find such a materiel for this covering that could efficiently and, most importantly, selectively sorb (extract and retain) molecules of a certain substance from the air, then a peculiar scales is obtained. The covering grows heavier due to analyte molecules “caught” from the air and begins to vibrate at a new frequency, the value of which depends on the quantity of analyzable compound accumulated in the coating material.
The task has to be solved anew for each new substance – the material should be found to selectively and efficiently extract a certain substance from the mixed gas. Every time the problem is successfully solved by the group under the guidance of Ya. I. Korenman and his colleague, Doctor of Science (Chemistry) Tatiana Kuchmenko. The problem was solved for hydrogen sulphide by development of an appropriate sensitive and selective sensor.

It is interesting to note that as a receptor covering – the layer on the surface of the quartz plate – the authors used various materials, including beeswax, which showed pretty good results. One of the best modifiers turned out to be the so-called apiezon wax – something like dense lubricant or resin. To make it adhere well to the quartz surface, the researchers suggest that it should be preliminarily processed by the polystyrene or starch solution.

Produced in strict compliance with such method, the sensors will be able to determine the hydrogen sulphide content in the air for 80 thousand times. Then the sensors can be replaced, and the old ones can be simply thrown away – this is an expandable and relatively low-cost material. The concept, its scientific and practical development is expensive. All that has been already done by the chemists. Now the production is pending – and them automatic devices will be constantly supervising the hydrogen sulphide concentration in workrooms, thus protecting the health of workers for whom, as Ford rightly remarked, no spare parts were provided for by nature.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>