Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Nose Is Good, but The Sensor Is Better, Or Chemists From Voronezh Are On Guard Of Health


Sensitive and durable sensors for determination of hydrogen sulfide concentration in the air were developed by chemists of the Voronezh State Technological Academy in collaboration with their colleagues from the Smolensk production association “Analitpribor”. Based on commercially available piesoelectric resonators, these sensors will reliably protect workers’ health by letting know that the poison concentration in the air has approached a dangerous boundary.

At first sight it seems that nature has provided for protection from the harmful gas. A human nose is able to catche hydrogen sulphide (according to the manual’s definition, the substance that strongly reeks) in absolutely tiny quantities when the gas concentration in the air is expressed in the thousandths of milligram per cubic meter. But the paradox is that this particular sensitivity of the nose can let us down: when the hydrogen sulphide concentration is approaching the maximum allowable value impending chronic desease of respiratory tract, blood, eyes, skin and digestive apparatus, the smell seems weaker to us. This is a kind of olfactory illusion.

The device developed by the Voronezh chemists will help to fight this illusion. It should be noted that researchers from the group under the guidance of Professor Yakov Kornman have learned to produce quite a variety of sensors based on microweighing of the air mixture analyte. They are based on the so-called piesoelectric resonators. These are devices the main component of which is a quartz plate covered by a special layer, vibrating at a strictly determined frequency under the influence of imressed voltage.

If we manage to find such a materiel for this covering that could efficiently and, most importantly, selectively sorb (extract and retain) molecules of a certain substance from the air, then a peculiar scales is obtained. The covering grows heavier due to analyte molecules “caught” from the air and begins to vibrate at a new frequency, the value of which depends on the quantity of analyzable compound accumulated in the coating material.
The task has to be solved anew for each new substance – the material should be found to selectively and efficiently extract a certain substance from the mixed gas. Every time the problem is successfully solved by the group under the guidance of Ya. I. Korenman and his colleague, Doctor of Science (Chemistry) Tatiana Kuchmenko. The problem was solved for hydrogen sulphide by development of an appropriate sensitive and selective sensor.

It is interesting to note that as a receptor covering – the layer on the surface of the quartz plate – the authors used various materials, including beeswax, which showed pretty good results. One of the best modifiers turned out to be the so-called apiezon wax – something like dense lubricant or resin. To make it adhere well to the quartz surface, the researchers suggest that it should be preliminarily processed by the polystyrene or starch solution.

Produced in strict compliance with such method, the sensors will be able to determine the hydrogen sulphide content in the air for 80 thousand times. Then the sensors can be replaced, and the old ones can be simply thrown away – this is an expandable and relatively low-cost material. The concept, its scientific and practical development is expensive. All that has been already done by the chemists. Now the production is pending – and them automatic devices will be constantly supervising the hydrogen sulphide concentration in workrooms, thus protecting the health of workers for whom, as Ford rightly remarked, no spare parts were provided for by nature.

Sergey Komarov | alfa
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>