Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists move forward understanding of schizophrenia

18.11.2005


A Scots-led medical research team has identified a new gene linked to major mental illness that links back to a previously discovered gene known to increase the risk of schizophrenia and depression. Scientists from the Universities of Edinburgh and Glasgow, together with scientists from the pharmaceutical company Merck, Sharp & Dohme Limited, report the discovery of the second gene, phosphodiesterase 4B (PDE4B) in the prestigious journal Science today (17 November). Their discoveries could lead to the eventual development of new drugs to treat mental health problems.



In 2000, researchers at the University of Edinburgh identified a gene they called Disrupted in Schizophrenia 1 (DISC1), which was found to increase the chances of people developing schizophrenia, bipolar disorder (manic depression) and major clinical depression.

Now, new research by the two Universities and by scientists from the pharmaceutical company Merck Sharpe and Dohme reveals that damage to the gene PDE4B is also seen to increase the risk of developing mental illness. PDE4B was already known to play an important role in how the brain thinks and builds memories, but had not previously been linked to mental disorder. In addition, researchers have discovered that DISC1 acts as a regulator for PDE4B, creating a ’pathway’ between the two genes.


Professor David Porteous at the University of Edinburgh said: "This is another important breakthrough in our still limited understanding of major mental illness. It is the result of a long term research commitment to use the tools of genetics to better understand the root causes of mental disorder.

"This has been a fantastic combined effort. The collaboration between the Universities of Edinburgh and of Glasgow, jointly with our research colleagues at Merck Sharpe and Dohme has really made this happen.

"It is now clear that the DISC1 gene plays an important role in the risk of developing schizophrenia or bipolar affective disorder. The new genetic link we have made to PDE4B and how that links back to DISC1 sheds much needed light on these debilitating disorders. It also suggests a new way of thinking about developing better and effective medicines."

Professor Miles Houslay of the University of Glasgow said: "Over the past few years we’ve been working hard to help in the development of medicines for treating asthma and chronic obstructive pulmonary disease by inhibiting very similar enzymes to PDE4B. It has been so exciting to work together with the Edinburgh and Merck groups in finding this new link between the gene coding for PDE4B and schizophrenia. This new research has the potential for developing novel ways of diagnosing and treating this debilitating disease."

Peter Hutson, the Neuroscience Research Centre, Merck Sharp & Dohme, said: "Mental illness remains a scourge of society. Our insights into the important role that the proteins PDE4B and DISC1 may play in the mis-function of the brain that leads to schizophrenia will lead our thinking in the development of new treatments for this disorder"

David Porteous | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>