Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists move forward understanding of schizophrenia

18.11.2005


A Scots-led medical research team has identified a new gene linked to major mental illness that links back to a previously discovered gene known to increase the risk of schizophrenia and depression. Scientists from the Universities of Edinburgh and Glasgow, together with scientists from the pharmaceutical company Merck, Sharp & Dohme Limited, report the discovery of the second gene, phosphodiesterase 4B (PDE4B) in the prestigious journal Science today (17 November). Their discoveries could lead to the eventual development of new drugs to treat mental health problems.



In 2000, researchers at the University of Edinburgh identified a gene they called Disrupted in Schizophrenia 1 (DISC1), which was found to increase the chances of people developing schizophrenia, bipolar disorder (manic depression) and major clinical depression.

Now, new research by the two Universities and by scientists from the pharmaceutical company Merck Sharpe and Dohme reveals that damage to the gene PDE4B is also seen to increase the risk of developing mental illness. PDE4B was already known to play an important role in how the brain thinks and builds memories, but had not previously been linked to mental disorder. In addition, researchers have discovered that DISC1 acts as a regulator for PDE4B, creating a ’pathway’ between the two genes.


Professor David Porteous at the University of Edinburgh said: "This is another important breakthrough in our still limited understanding of major mental illness. It is the result of a long term research commitment to use the tools of genetics to better understand the root causes of mental disorder.

"This has been a fantastic combined effort. The collaboration between the Universities of Edinburgh and of Glasgow, jointly with our research colleagues at Merck Sharpe and Dohme has really made this happen.

"It is now clear that the DISC1 gene plays an important role in the risk of developing schizophrenia or bipolar affective disorder. The new genetic link we have made to PDE4B and how that links back to DISC1 sheds much needed light on these debilitating disorders. It also suggests a new way of thinking about developing better and effective medicines."

Professor Miles Houslay of the University of Glasgow said: "Over the past few years we’ve been working hard to help in the development of medicines for treating asthma and chronic obstructive pulmonary disease by inhibiting very similar enzymes to PDE4B. It has been so exciting to work together with the Edinburgh and Merck groups in finding this new link between the gene coding for PDE4B and schizophrenia. This new research has the potential for developing novel ways of diagnosing and treating this debilitating disease."

Peter Hutson, the Neuroscience Research Centre, Merck Sharp & Dohme, said: "Mental illness remains a scourge of society. Our insights into the important role that the proteins PDE4B and DISC1 may play in the mis-function of the brain that leads to schizophrenia will lead our thinking in the development of new treatments for this disorder"

David Porteous | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>