Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene silencing therapy for cervical cancer

17.11.2005


Researchers at The University of Queensland’s (UQ) Centre for Immunology and Cancer Research (CICR), based at the Princess Alexandra Hospital, have pioneered a new approach for the treatment of cervical cancer.



Lead researcher Dr Nigel McMillan said the finding was based on the method of "gene silencing", a novel technique to target and turn off single genes in a cell.

"Our research shows not only can we stop cervical cancer cells from growing in the test tube, but we can also completely eliminate the formation of cancer tumours in animal models," Dr McMillan said.


Professor Ian Frazer, Director of the CICR and developer of a vaccine for cervical cancer, said the research represented a significant step towards developing gene therapy for cervical cancer.

Cervical cancer is the leading cause of cancer death in women aged 25-50 worldwide and causes around 300 deaths per year in Australia.

Cervical cancer is caused by infection with the human papillomavirus and is the result of the over-production of two viral cancer-causing genes called E6 and E7.

The research team was able to turn off the production of these genes in cancer cells, resulting in the death of the cancer.

"Because these viral genes are foreign we can treat normal cells and they remain unaffected by our treatment," Dr McMillan said.

"Development of treatments for humans would be an advance over the current treatments, radiation and chemotherapy, which kill not only cancer cells but also normal cells that leads to hair loss and nausea.

"We envisage such treatment will be used for all forms of cervical cancer including the premalignant lesions picked up by the pap smear and especially for advanced cervical cancers where the cancer has moved to other sites such as the lung or liver."

Dr McMillan said the research also showed gene silencing enhanced the effect of chemotherapy by up to four times.

He said the findings suggest a cancer-specific treatment for advanced cervical cancers will be possible either alone or in combination with current treatments.

He said the next stage of research will focus on the development of materials for human trials to allow proper delivery of the drug to patients and to investigate whether other cancer types can be treated this way. A treatment using this technique is at least three years away.

Dr Nigel McMillan | EurekAlert!
Further information:
http://www.researchaustralia.com.au/

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>