Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel protein complex enables survival in hostile environment

17.11.2005


Biswarup Mukhopadhyay and Eric Johnson from the Virginia Bioinformatics Institute at Virginia Tech have discovered a novel enzyme that represents an ancient detoxification system and provides a clue to the development of early metabolism on earth.



The research appears in the Nov. 18, 2005 issue of the Journal of Biological Chemistry, in the article "A New Type of Sulfite Reductase, a Novel Coenzyme F420-dependent Enzyme, from the Methanoarchaeon Methanocaldococcus jannaschii".

"The newly discovered enzyme links biological methanogenesis and sulfate reduction, two most ancient respiratory metabolisms, in a unique way," said Mukhopadhyay, whose lab studies organisms that produce methane, in particular M. jannaschii.


Commenting on the research, William Whitman, professor of microbiology at the University of Georgia and an expert in microbial diversity and the evolutionary relationships of prokaryotes, said: "This original work provides important insights into the evolution of the methanogens. These organisms have often been thought to be very limited in their metabolic capabilities. The current study goes a long way to dispelling this simplistic view and greatly extends our knowledge of their versatility."

Methanogenesis is a microbial process in nature that produces methane, an energy resource and a green house gas. Sulfate reduction is also a microbial process where organisms turn sulfate into sulfide, a corrosive compound or gas that smells like rotten eggs.

Methanogenesis is a 2.7–3.2-billion-year-old process and sulfate reduction originated at least 3.7 billion years ago on earth. "These two processes apparently cannot exist within one living cell, because the reduction of sulfate produces sulfite as an intermediate, which damages an essential component of the methane production machinery," Mukhopadhyay said. "Consequently, sulfite kills most methanogens."

However, early methanogens must have been able to tolerate sulfite. "Early earth had a lot of sulfide but no oxygen until about 2.7 billion years ago. Then, the reaction of the small amounts of oxygen with sulfide would have produced an incomplete oxidation product – sulfite," he said. "Methanogens present during the oxygenation of earth had to face this sulfite."

But Johnson and Mukhopadhyay could not find any sign of such ability in the DNA sequence data for methanogens. "It was clear that either the ancient sulfite detoxification has been lost or it is not recognizable because it is unlike any known system," Mukhopadhyay said.

The challenge of the latter possibility attracted the group to the topic. They decided to see if methanogens that live in an environment where the early earth conditions are preserved – deep-sea hydrothermal vents – still have the ancient detoxification system.

Inside a hydrothermal vent, sulfide-containing superheated water at 350 C (662 F) mixes with cold oxygen-containing water, creating cooler environments -- 48 to 94 C (118 to 200 F) -- where M. jannaschii can thrive. "This sulfide-oxygen mixture can also generate sulfite. Therefore, M. jannaschii experiences conditions that existed on early earth," Mukhopadhyay said.

He knew that Lacy Daniels, his mentor at the University of Iowa, and Negash Belay, a colleague during his graduate studies, had found sulfite assimilation ability in an organism closely related to M. jannaschii, but had not investigated how that organism handled the sulfite toxicity. Putting all these pieces of information together, Johnson and Mukhopadhyay hypothesized that M. jannaschii has a sulfite-reducing enzyme and began to search for this system.

Protein analysis of M. jannaschii from sulfite-free and sulfite-enhanced environments revealed that M. jannaschii tolerates sulfite and even uses it as a sulfur source by expressing an enzyme not seen previously. The enzyme, which is located on the cell membrane, converts toxic sulfite into sulfide, an essential nutrient of M. jannaschii.

This enzyme, coenzyme F420-dependent sulfite reductase, or Fsr, "uses an unusual coenzyme – a deazaflavin molecule called Factor 420 -- as an electron carrier for the reduction of sulfite. None of the previously described sulfite reductases use F420," Johnson said.

By use of genome-sequence-driven proteomics techniques, they identified the gene for the enzyme. A search showed that this gene exists only in hydrothermal vent methanogens and their close relatives, but not in other microorganisms.

From the sequence of the fsr gene, Johnson and Mukhopadhyay discovered that the novel activity of Fsr comes from a unique structure; two previously known proteins with unrelated functions have been physically combined by use of a linker. Even after this linking, the two units retain their individual characteristics.

"We hypothesize that the NH2-terminal half of Fsr (named Fsr-N) collects electrons via F420 and the COOH-terminal half (Fsr-C) uses those electrons to reduce sulfite to sulfide," Johnson said.

In their experiments, the researchers detected both of these individual properties as well as the combined activity. "Fsr-N resembles a protein that introduces electrons into the membrane-based energy transduction systems of certain archaea. Such an energy transduction system is also found in E. coli and humans," Mukhopadhyay said. "Fsr-C is similar to the sulfite reductases that are found in certain bacteria and archaea. These previously described sulfite reductases do not use coenzyme F420 as the electron source and are also not tethered to their electron-donating partners."

"The existence of Fsr poses several questions that are important in the context of evolution of metabolism and enzyme mechanism," Mukhopadhyay said. "We do not know whether the splitting of the fsr gene gave rise to the sulfite reductases of the bacteria and energy transducers of certain archaea or if this enzyme originated from a gene fusion event."

"From the affinities and reaction rates it is clear that the enzyme will sense even a minute amount of sulfite and will neutralize even a large amount of sulfite very quickly. These properties suited the need of the ancient methanogens when oxygen appeared on earth," Mukhopadhyay said. "But, why did the organism have this enzyme in the first place?"

A clue comes from published works by Robert White, professor of biochemistry at Virginia Tech, who studies how metabolic systems evolved and collaborates with Mukhopadhyay. "It is possible that M. jannaschii had this enzyme for cofactor biosynthesis and having it in advance gave the organism a selective advantage when oxygen, and consequently sulfite, appeared," Mukhopadhyay said. "Since we now know that methanogens had a way to handle sulfite toxicity, we could hypothesize that the rest of the sulfate reduction pathway once existed in these organisms."

Johnson and Mukhopadhyay have already seen some remnants of this system in M. jannaschii. Thus, they say, it is possible that methanogenesis and sulfate reduction could have originated in the same organism after all, and, in the course of time, a loss of the sulfite reductase gene gave rise to a sulfite-sensitive methanogen. Similarly the loss of certain key genes gave rise to the archaea that reduces sulfate, but do not make methane. "But it is equally possible that the sulfite reduction system was developed in another organism and the methanogens acquired the sulfite reduction gene via horizontal transfer from that entity," Mukhopadhyay said.

Rolf Thauer, professor and head of the Department of Biochemistry at the Max Planck Institute for Terrestrial Microbiology in Marburg, Germany, and a noted authority on anaerobic microorganisms, commented: "The finding of a novel sulfite reductase in a methanogenic archaeon is an important discovery. It may prove to be directly relevant to the anaerobic oxidation of methane with sulfate, a process in which archaea closely related to methanogenic archaea are intimately involved."

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>