Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies show apo A-I Milano gene transfer and antibody therapy cut atherosclerotic plaque

17.11.2005


Presentations: American Heart Association Scientific Sessions 2005



Cardiology researchers at Cedars-Sinai Medical Center have found that a single injection of a harmless virus engineered to carry a beneficial, mutant gene enabled animals to manufacture their own supply of the gene’s protein product that protects against plaque buildup in blood vessels. As a result, the amount of plaque was significantly reduced, as was an immune reaction that can lead to plaque buildup and rupture, which can cause a blocked artery and heart attack or stroke.

The researchers will present their findings from this and other studies at the American Heart Association Scientific Sessions 2005 Nov. 13 through 16 in Dallas. They are pursuing a variety of approaches to interrupt the complex processes leading to plaque formation and rupture, seeking new ways to treat and even prevent atherosclerosis.


Apolipoprotein A-I (apo A-I) is a protein that becomes part of HDL, or "good" cholesterol. About 25 years ago, a family in northern Italy was found by Italian researchers to have a mutation in the gene responsible for making the protein. The mutant form (apo A-I Milano) appeared to protect its carriers from cardiovascular disease. In 1994, Cedars-Sinai researchers led by Prediman K. Shah, M.D., director of the Division of Cardiology and the Atherosclerosis Research Center, showed for the first time that intravenous injection of a genetically engineered form of the protein markedly reduced arterial plaque buildup in animals fed a high cholesterol diet. A series of subsequent studies in genetically engineered mice conducted in Shah’s laboratory confirmed the potent effects of apo A-I Milano protein on prevention and reversal of plaque build-up.

Based on the results of Shah’s studies, a clinical trial was conducted in humans with similar results. After five weeks of once-a-week injections, apo A-I Milano significantly shrank plaque in coronary arteries. The protein appeared to actually remove bad cholesterol, even from sites on arteries where plaque had accumulated.

"The initial studies and treatments were based on injection of the apo A-I Milano protein," said Shah. "Now we are using not the protein, but the gene itself. We are putting the gene inside an innocuous virus and injecting the virus so that the body can produce its own supply of apo A-I Milano. One single injection of the gene, carried by the virus, markedly reduces plaque buildup in mice. Advantages of this approach are that we would not need to produce the protein in the laboratory and there would be no need for repeated injections, as there is with the protein. With the animal studies confirming the effectiveness of the gene therapy approach, it may be possible that human trials could begin within several years."

The gene therapy also modulated an immune response that contributes to plaque buildup and rupture. When LDL (bad cholesterol) remains in the bloodstream, it becomes oxidized, which causes the release of a variety of chemicals that damage the blood vessel. In its attempt to repair the injury, the body floods the area with immune system cells called macrophages, which, along with LDL, infiltrate the blood vessel wall.

The result of this injury-repair cycle is the accumulation of plaque – lipids and macrophages covered by a fibrous cap. Plaques with a large lipid core, many inflammatory cells and a thin cap are especially vulnerable to rupture. If a plaque deposit ruptures, debris can block the flow of blood, but the bloodstream also can be blocked by the formation of a blood clot – the immune system’s attempt to heal the rupture.

With a growing understanding of the inflammatory processes involved in the development and threat of "vulnerable" plaque, researchers are looking for ways to limit the local immune response, and in animals receiving the apo A-I Milano gene, macrophage immunoreactivity was reduced by 36 percent and 54 percent, compared to two control groups.

A related study to be presented at the AHA meetings confirmed that transfer of the apo A-I Milano gene is more effective than transfer of the normal apo A-I gene in reducing atherosclerosis and plaque inflammation.

Cedars-Sinai researchers, collaborating with researchers from University of Lund in Sweden, will also describe an immunization technique in which antibodies that specifically target oxidized LDL was injected. An earlier study found that the antibody therapy could prevent plaque buildup, but this work documented that pre-existing plaque could be reduced by up to 50 percent in the animal model.

"The present study suggests that antibody treatment has the ability to rapidly and significantly reduce the extent of already present, advanced atherosclerotic lesions," according to the research team. "Positive immunization with antibodies directed against oxidized LDL isotopes might constitute a future fast-acting therapy for patients at high risk for acute cardiovascular events."

Sandy Van | EurekAlert!
Further information:
http://www.cedars-sinai.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>