Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Perception’ gene tracked humanity’s evolution, scientists say

15.11.2005


A gene thought to influence perception and susceptibility to drug dependence is expressed more readily in human beings than in other primates, and this difference coincides with the evolution of our species, say scientists at Indiana University Bloomington and three other academic institutions. Their report appears in the December issue of Public Library of Science Biology.



The gene encodes prodynorphin, an opium-like protein implicated in the anticipation and experience of pain, social attachment and bonding, as well as learning and memory.

"Humans have the ability to turn on this gene more easily and more intensely than other primates," said IU Bloomington computational biologist Matthew Hahn, who did the brunt of the population genetics work for the paper. "Given its function, we believe regulation of this gene was likely important in the evolution of modern humans’ mental capacity."


Prodynorphin is a precursor molecule of the neurotransmitters alpha-endorphin, dynorphin A, and dynorphin B, collectively called opioids because their action is similar to stimulatory effects caused by the drug opium.

The notion that humans are more perceptive than other primates would hardly be news. But the list of genes known to have tracked or guided humanity’s separation from the other apes is a short one. Genes controlling the development of the brain almost always turn out to be identical or nearly so in chimpanzees and human beings. And as it turns out, the protein prodynorphin is identical in humans and chimps.

It’s the prodynorphin gene’s promoter sequence -- upstream DNA that controls how much of the protein is expressed -- where the big differences are. "Only about 1 to 1.5 percent of our DNA differs from chimpanzees," Hahn said. "We found that in a stretch of DNA about 68 base pairs in length upstream of prodynorphin, 10 percent of the sequence was different between us and chimps."

Hahn said this "evolutionary burst" is responsible for differences in gene expression rates. When induced, the human prodynorphin gene was 20 percent more active than the chimpanzee prodynorphin gene. Past research has also observed variation in expression levels within humans.

This report supports a growing consensus among evolutionary anthropologists that hominid divergence from the other great apes was fueled not by the origin of new genes, but by the quickening (or slowing) of the expression of existing genes.

Hahn and his colleagues at Duke University, University College London and Medical University of Vienna first became interested in primate prodynorphin after noticing an unusual amount of variation in the human version’s promoter. The scientists decided to examine the prodynorphin gene in human beings around the world and in non-human primates to see whether such variation was commonplace and whether that variation affected gene expression.

The group found a surprisingly large amount of genetic variation among humans within the prodynorphin gene’s promoter. They examined prodynorphin genes from Chinese, Papua New Guineans, (Asian) Indians, Ethiopians, Cameroonians, Austrians and Italians.

The group also sequenced and cloned prodynorphin genes from chimpanzees, gorillas, orangutans, rhesus macaques, pigtail macaques and guinea baboons. The researchers found that high genetic variation in the prodynorphin promoter was unique to humans. Other primates’ promoters were far more homogeneous.

Exactly how prodynorphin influences human perception is unknown. Evidence for its various effects comes entirely from clinical studies of people who have mutations in the gene. Past clinical studies have also indicated a positive correlation between lower prodynorphin levels in the brain and susceptibility to cocaine dependence.

Matthew Rockman, David Goldstein and Gregory Wray (Duke University); Nicole Soranzo (University College London); and Fritz Zimprich (Medical University of Vienna) also contributed to the research. It was funded by grants from the National Science Foundation, NASA, the Royal Society, and the Leverhulme Trust (U.K.).

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>