Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Perception’ gene tracked humanity’s evolution, scientists say

15.11.2005


A gene thought to influence perception and susceptibility to drug dependence is expressed more readily in human beings than in other primates, and this difference coincides with the evolution of our species, say scientists at Indiana University Bloomington and three other academic institutions. Their report appears in the December issue of Public Library of Science Biology.



The gene encodes prodynorphin, an opium-like protein implicated in the anticipation and experience of pain, social attachment and bonding, as well as learning and memory.

"Humans have the ability to turn on this gene more easily and more intensely than other primates," said IU Bloomington computational biologist Matthew Hahn, who did the brunt of the population genetics work for the paper. "Given its function, we believe regulation of this gene was likely important in the evolution of modern humans’ mental capacity."


Prodynorphin is a precursor molecule of the neurotransmitters alpha-endorphin, dynorphin A, and dynorphin B, collectively called opioids because their action is similar to stimulatory effects caused by the drug opium.

The notion that humans are more perceptive than other primates would hardly be news. But the list of genes known to have tracked or guided humanity’s separation from the other apes is a short one. Genes controlling the development of the brain almost always turn out to be identical or nearly so in chimpanzees and human beings. And as it turns out, the protein prodynorphin is identical in humans and chimps.

It’s the prodynorphin gene’s promoter sequence -- upstream DNA that controls how much of the protein is expressed -- where the big differences are. "Only about 1 to 1.5 percent of our DNA differs from chimpanzees," Hahn said. "We found that in a stretch of DNA about 68 base pairs in length upstream of prodynorphin, 10 percent of the sequence was different between us and chimps."

Hahn said this "evolutionary burst" is responsible for differences in gene expression rates. When induced, the human prodynorphin gene was 20 percent more active than the chimpanzee prodynorphin gene. Past research has also observed variation in expression levels within humans.

This report supports a growing consensus among evolutionary anthropologists that hominid divergence from the other great apes was fueled not by the origin of new genes, but by the quickening (or slowing) of the expression of existing genes.

Hahn and his colleagues at Duke University, University College London and Medical University of Vienna first became interested in primate prodynorphin after noticing an unusual amount of variation in the human version’s promoter. The scientists decided to examine the prodynorphin gene in human beings around the world and in non-human primates to see whether such variation was commonplace and whether that variation affected gene expression.

The group found a surprisingly large amount of genetic variation among humans within the prodynorphin gene’s promoter. They examined prodynorphin genes from Chinese, Papua New Guineans, (Asian) Indians, Ethiopians, Cameroonians, Austrians and Italians.

The group also sequenced and cloned prodynorphin genes from chimpanzees, gorillas, orangutans, rhesus macaques, pigtail macaques and guinea baboons. The researchers found that high genetic variation in the prodynorphin promoter was unique to humans. Other primates’ promoters were far more homogeneous.

Exactly how prodynorphin influences human perception is unknown. Evidence for its various effects comes entirely from clinical studies of people who have mutations in the gene. Past clinical studies have also indicated a positive correlation between lower prodynorphin levels in the brain and susceptibility to cocaine dependence.

Matthew Rockman, David Goldstein and Gregory Wray (Duke University); Nicole Soranzo (University College London); and Fritz Zimprich (Medical University of Vienna) also contributed to the research. It was funded by grants from the National Science Foundation, NASA, the Royal Society, and the Leverhulme Trust (U.K.).

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>