Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird calls may have meaning

10.11.2005


A deep-voiced black-capped chickadee may wonder why other birds ignore it, but there may be a good reason behind the snub, says a University of Alberta study that looked into how the bird responds to calls.



Dr. Isabelle Charrier and Dr. Chris Sturdy modified the black- capped chickadee calls, played those sounds back to the bird and observed how they reacted. They found that the chickadee relies on several acoustic features including pitch, order of the notes and rhythm of the call. They also rejected the calls of the control bird, the gray-crowned rosy finch, in favour of their own species. This research is published in the current edition of the journal, "Behavioural Processes."

The chickadees two most well-known vocalizations are the "chick-a-dee" call and the "fee-bee" song. The song is produced mainly by males and is used to attract a mate and to defend a territory during the breeding season. The learned call is produced by both sexes throughout the year and is believed to serve a variety of functions such as raising mild alarm, maintaining contact between mates and co-ordinating flock activities. They even go through stages of learning this "language," which explains why juvenile birds can be heard frantically practicing to perfect the call.


In this study, the team--Charrier was a post-doctoral fellow in Sturdy’s lab but has since returned to France--discovered that if they raise the pitch, the bird would still respond, but if they lowered it, the chickadee stopped answering. "We speculate that this happens because the pitch may be related to size, so the chickadee thinks, ’wow, that bird sounds big,’ and they stay away from it," says Sturdy, from the Faculty of Science. "The first thing birds use to identify vocalizations is the frequency range. Different birds use different acoustic ranges as a filter, so if it is too high or too low, they ignore it."

When the scientists switched around the order of the notes in the sound, the birds didn’t respond to those calls. When the space between the sounds increased--there was no different when they decreased--the chickadees stopped responding. "These changes are so slight to our ears that we wouldn’t be able to tell the difference, but a chickadee can," said Sturdy, who adds that the way chickadees learn vocalizations is parallel to the way humans learn language. "This research shows that there is a functional aspect to these calls. Some note types may be tied to food gathering or trying to get birds around a feeder and this is laying the foundation for decoding these sounds on a fine scale."

Sturdy said this research will help learn in which social context black-capped chickadees will be more sensitive to a particular type of calls.

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>