Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group proves it’s possible to grow new lung alveoli by growing new blood vessels

10.11.2005


University of Alberta researchers pioneer gene therapy to restore alveoli and lung capillaries in damaged rat lungs; first step in one day helping premature babies

The good news is that medical advances in perinatal care have allowed us to save many more premature babies. The bad news is they’re often at risk of developing bronchopulmonary dysplasia--a chronic lung disease caused by having to place the tiny infants on ventilators and oxygen-rich therapy for acute respiratory failure.

It’s really a win-lose situation: the babies are saved but they pay the price with dramatically underdeveloped lungs--forcing them to spend their early days outside the womb fighting for every breath. And now, with many of these premature babies reaching their adolescent years, clinicians and researchers are also waiting to see whether longer term health problems are going to begin occurring.



"Right now we simply don’t have any treatments," says Bernard Thébaud, a clinician-scientist and neonatologist in the Department of Pediatrics. "So, if we can’t prevent it, we’ve started to think about how we might repair it."

Using animal models, Dr. Thébaud and a team of University of Alberta researchers have taken what they say is the first important step towards a treatment--in effect, growing new blood vessels and alveoli--the tiny air sacs where gas exchange occurs between the lungs and blood vessels--in tiny rat lungs.

The results of their work were recently published in Circulation, entitled Vascular Endothelial Growth Factor Gene Therapy Increases Survival, Promotes Lung Angiogenesis, and Prevents Alveolar Damage in Hyperoxia-Induced Lung Injury: Evidence That Angiogenesis Participates in Alveolarization.

The results have caused a stir in the scientific community: In an accompanying editorial in the October 18 issue of the journal, Kurt Stenmark, a University of Colorado Divisions of Critical Care and Pulmonary Medicine researcher, said the studies "…raise new possibilities for the treatment of infants with severe chronic lung disease. It seems possible that by augmenting or restoring vascular growth, overall lung growth and ultimately lung function can be restored."

Doing that involved a new gene therapy technique, explains Dr. Thébaud. Knowing that a particular protein, VEGF, a vascular endothelial growth factor, is crucial for the normal development of the lung, and that angiopoeitin-1, another angiogenic growth factor is crucial for blood vessel maturation, the team attached the proteins to an adenovirus and administered it through an aerosol directly into the lungs. In effect, the virus carried the protein to the heart of millions of lung cells. Once inside the cells, the growth factor proteins went to work doing the job they were programmed to do.

The results were striking: In microscopic images, the scientists have charted the growth of alveoli and lung capillaries. In a typically healthy lung, a complex network of capillaries encircles the alveoli. Oxygen flows from the lungs through ultra-fine epithelial and endothelial tissues into the blood; carbon dioxide diffuses from the blood into the alveoli. In an infant’s underdeveloped lungs, the alveoli are larger and fewer and there are fewer developed capillaries. It’s a condition that leaves them gasping--and one that is shared by people who have emphysema.

"At this stage it’s simply proof of principle," says Dr. Thébaud, also a pediatrician at the Stollery Children’s Hospital’s Neonatal Intensive Care Unit. The next step is to prove it’s possible to replicate safely in larger mammals. Once that’s done, it’s possible the concept--growing blood vessels to cure a disease that is traditionally thought of as an airway disease--could be tested clinically in people.

Michael Robb | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>