Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group proves it’s possible to grow new lung alveoli by growing new blood vessels

10.11.2005


University of Alberta researchers pioneer gene therapy to restore alveoli and lung capillaries in damaged rat lungs; first step in one day helping premature babies

The good news is that medical advances in perinatal care have allowed us to save many more premature babies. The bad news is they’re often at risk of developing bronchopulmonary dysplasia--a chronic lung disease caused by having to place the tiny infants on ventilators and oxygen-rich therapy for acute respiratory failure.

It’s really a win-lose situation: the babies are saved but they pay the price with dramatically underdeveloped lungs--forcing them to spend their early days outside the womb fighting for every breath. And now, with many of these premature babies reaching their adolescent years, clinicians and researchers are also waiting to see whether longer term health problems are going to begin occurring.



"Right now we simply don’t have any treatments," says Bernard Thébaud, a clinician-scientist and neonatologist in the Department of Pediatrics. "So, if we can’t prevent it, we’ve started to think about how we might repair it."

Using animal models, Dr. Thébaud and a team of University of Alberta researchers have taken what they say is the first important step towards a treatment--in effect, growing new blood vessels and alveoli--the tiny air sacs where gas exchange occurs between the lungs and blood vessels--in tiny rat lungs.

The results of their work were recently published in Circulation, entitled Vascular Endothelial Growth Factor Gene Therapy Increases Survival, Promotes Lung Angiogenesis, and Prevents Alveolar Damage in Hyperoxia-Induced Lung Injury: Evidence That Angiogenesis Participates in Alveolarization.

The results have caused a stir in the scientific community: In an accompanying editorial in the October 18 issue of the journal, Kurt Stenmark, a University of Colorado Divisions of Critical Care and Pulmonary Medicine researcher, said the studies "…raise new possibilities for the treatment of infants with severe chronic lung disease. It seems possible that by augmenting or restoring vascular growth, overall lung growth and ultimately lung function can be restored."

Doing that involved a new gene therapy technique, explains Dr. Thébaud. Knowing that a particular protein, VEGF, a vascular endothelial growth factor, is crucial for the normal development of the lung, and that angiopoeitin-1, another angiogenic growth factor is crucial for blood vessel maturation, the team attached the proteins to an adenovirus and administered it through an aerosol directly into the lungs. In effect, the virus carried the protein to the heart of millions of lung cells. Once inside the cells, the growth factor proteins went to work doing the job they were programmed to do.

The results were striking: In microscopic images, the scientists have charted the growth of alveoli and lung capillaries. In a typically healthy lung, a complex network of capillaries encircles the alveoli. Oxygen flows from the lungs through ultra-fine epithelial and endothelial tissues into the blood; carbon dioxide diffuses from the blood into the alveoli. In an infant’s underdeveloped lungs, the alveoli are larger and fewer and there are fewer developed capillaries. It’s a condition that leaves them gasping--and one that is shared by people who have emphysema.

"At this stage it’s simply proof of principle," says Dr. Thébaud, also a pediatrician at the Stollery Children’s Hospital’s Neonatal Intensive Care Unit. The next step is to prove it’s possible to replicate safely in larger mammals. Once that’s done, it’s possible the concept--growing blood vessels to cure a disease that is traditionally thought of as an airway disease--could be tested clinically in people.

Michael Robb | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>