Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group proves it’s possible to grow new lung alveoli by growing new blood vessels

10.11.2005


University of Alberta researchers pioneer gene therapy to restore alveoli and lung capillaries in damaged rat lungs; first step in one day helping premature babies

The good news is that medical advances in perinatal care have allowed us to save many more premature babies. The bad news is they’re often at risk of developing bronchopulmonary dysplasia--a chronic lung disease caused by having to place the tiny infants on ventilators and oxygen-rich therapy for acute respiratory failure.

It’s really a win-lose situation: the babies are saved but they pay the price with dramatically underdeveloped lungs--forcing them to spend their early days outside the womb fighting for every breath. And now, with many of these premature babies reaching their adolescent years, clinicians and researchers are also waiting to see whether longer term health problems are going to begin occurring.



"Right now we simply don’t have any treatments," says Bernard Thébaud, a clinician-scientist and neonatologist in the Department of Pediatrics. "So, if we can’t prevent it, we’ve started to think about how we might repair it."

Using animal models, Dr. Thébaud and a team of University of Alberta researchers have taken what they say is the first important step towards a treatment--in effect, growing new blood vessels and alveoli--the tiny air sacs where gas exchange occurs between the lungs and blood vessels--in tiny rat lungs.

The results of their work were recently published in Circulation, entitled Vascular Endothelial Growth Factor Gene Therapy Increases Survival, Promotes Lung Angiogenesis, and Prevents Alveolar Damage in Hyperoxia-Induced Lung Injury: Evidence That Angiogenesis Participates in Alveolarization.

The results have caused a stir in the scientific community: In an accompanying editorial in the October 18 issue of the journal, Kurt Stenmark, a University of Colorado Divisions of Critical Care and Pulmonary Medicine researcher, said the studies "…raise new possibilities for the treatment of infants with severe chronic lung disease. It seems possible that by augmenting or restoring vascular growth, overall lung growth and ultimately lung function can be restored."

Doing that involved a new gene therapy technique, explains Dr. Thébaud. Knowing that a particular protein, VEGF, a vascular endothelial growth factor, is crucial for the normal development of the lung, and that angiopoeitin-1, another angiogenic growth factor is crucial for blood vessel maturation, the team attached the proteins to an adenovirus and administered it through an aerosol directly into the lungs. In effect, the virus carried the protein to the heart of millions of lung cells. Once inside the cells, the growth factor proteins went to work doing the job they were programmed to do.

The results were striking: In microscopic images, the scientists have charted the growth of alveoli and lung capillaries. In a typically healthy lung, a complex network of capillaries encircles the alveoli. Oxygen flows from the lungs through ultra-fine epithelial and endothelial tissues into the blood; carbon dioxide diffuses from the blood into the alveoli. In an infant’s underdeveloped lungs, the alveoli are larger and fewer and there are fewer developed capillaries. It’s a condition that leaves them gasping--and one that is shared by people who have emphysema.

"At this stage it’s simply proof of principle," says Dr. Thébaud, also a pediatrician at the Stollery Children’s Hospital’s Neonatal Intensive Care Unit. The next step is to prove it’s possible to replicate safely in larger mammals. Once that’s done, it’s possible the concept--growing blood vessels to cure a disease that is traditionally thought of as an airway disease--could be tested clinically in people.

Michael Robb | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>