Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group proves it’s possible to grow new lung alveoli by growing new blood vessels

10.11.2005


University of Alberta researchers pioneer gene therapy to restore alveoli and lung capillaries in damaged rat lungs; first step in one day helping premature babies

The good news is that medical advances in perinatal care have allowed us to save many more premature babies. The bad news is they’re often at risk of developing bronchopulmonary dysplasia--a chronic lung disease caused by having to place the tiny infants on ventilators and oxygen-rich therapy for acute respiratory failure.

It’s really a win-lose situation: the babies are saved but they pay the price with dramatically underdeveloped lungs--forcing them to spend their early days outside the womb fighting for every breath. And now, with many of these premature babies reaching their adolescent years, clinicians and researchers are also waiting to see whether longer term health problems are going to begin occurring.



"Right now we simply don’t have any treatments," says Bernard Thébaud, a clinician-scientist and neonatologist in the Department of Pediatrics. "So, if we can’t prevent it, we’ve started to think about how we might repair it."

Using animal models, Dr. Thébaud and a team of University of Alberta researchers have taken what they say is the first important step towards a treatment--in effect, growing new blood vessels and alveoli--the tiny air sacs where gas exchange occurs between the lungs and blood vessels--in tiny rat lungs.

The results of their work were recently published in Circulation, entitled Vascular Endothelial Growth Factor Gene Therapy Increases Survival, Promotes Lung Angiogenesis, and Prevents Alveolar Damage in Hyperoxia-Induced Lung Injury: Evidence That Angiogenesis Participates in Alveolarization.

The results have caused a stir in the scientific community: In an accompanying editorial in the October 18 issue of the journal, Kurt Stenmark, a University of Colorado Divisions of Critical Care and Pulmonary Medicine researcher, said the studies "…raise new possibilities for the treatment of infants with severe chronic lung disease. It seems possible that by augmenting or restoring vascular growth, overall lung growth and ultimately lung function can be restored."

Doing that involved a new gene therapy technique, explains Dr. Thébaud. Knowing that a particular protein, VEGF, a vascular endothelial growth factor, is crucial for the normal development of the lung, and that angiopoeitin-1, another angiogenic growth factor is crucial for blood vessel maturation, the team attached the proteins to an adenovirus and administered it through an aerosol directly into the lungs. In effect, the virus carried the protein to the heart of millions of lung cells. Once inside the cells, the growth factor proteins went to work doing the job they were programmed to do.

The results were striking: In microscopic images, the scientists have charted the growth of alveoli and lung capillaries. In a typically healthy lung, a complex network of capillaries encircles the alveoli. Oxygen flows from the lungs through ultra-fine epithelial and endothelial tissues into the blood; carbon dioxide diffuses from the blood into the alveoli. In an infant’s underdeveloped lungs, the alveoli are larger and fewer and there are fewer developed capillaries. It’s a condition that leaves them gasping--and one that is shared by people who have emphysema.

"At this stage it’s simply proof of principle," says Dr. Thébaud, also a pediatrician at the Stollery Children’s Hospital’s Neonatal Intensive Care Unit. The next step is to prove it’s possible to replicate safely in larger mammals. Once that’s done, it’s possible the concept--growing blood vessels to cure a disease that is traditionally thought of as an airway disease--could be tested clinically in people.

Michael Robb | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>