Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plane-Trees Used To Grow In Siberia 85 Million Years Ago

04.11.2005


The Cretaceous that lasted approximately from 135 through 65 million years ago was the period of drastic changes in biosphere. It was at that time that mass extinction of dinosaurs and other reptiles took place; birds and mammals came to take their place. In the early Cretaceous, the first flowering plants appeared, they quickly occupied the dominant position overland and settled in diverse ecotopes. These large-scale processes, thanks to which the Earth gradually acquired the contemporary appearance, draw rapt attention of researchers.



In Western Siberia, only few locations of the Cretaceous plant remains exist, therefore, each new find of them brings the most valuable information on flora evolution in this vast territory. One of such finds was made quite recently, in July 2005, by palaeobotanist Lina Golovneva, specialist of the Komarov Botanical Institute, Russian Academy of Sciences (St. Petersburg), and her colleagues in the expedition organized with support of the Russian Foundation for Basic Research. The researchers worked near Antibes village in the Kemerovo Region, where on sandy slopes of desolated open pits they found clay interlayers containing multiple imprints of ancient plants’ leaves. According to the preliminary estimate, their age makes approximately 85 million years; they used to grow back in the Coniacian stage of the Cretaceous. Other locations of plants of this age are not yet known in Western Siberia.

The majority of plant remains found near Antibes are imprints of tree leaves known under the scientific name of trochodendroides (which relate to contemporary redbud – a beautiful tree from Japan and China that is also sometimes cultivated in Russian parks) and paraprotophyllum (a close relative to a plane-tree normally growing in the Caucasus, the Crimea and along boulevards of Paris). The bilobate leaves of liriophyllum are found more rarely in this area; their shape reminds that of the North American tulip-tree’s (liriodendron’s ) leaves. There also were discovered imprints of a peculiar fern, resembling Venus’ hair, its reproductive organs however having a totally unique structure.


Strictly speaking, phytolites near Antibes village were for the first time found back at the end of the 20s of the last century by Professor V.A. Khaklov (Tomsk University); at the end of the 30s, they were investigated by student V.K. Cherepnin. Unfortunately, these scientists managed to collect only one and a half dozens of specimen, which is evidently insufficient for a more or less complete characteristic of the ancient flora. The open pit where they found remains of ancient plants does not exist any longer.

Although Lina Golovneva had set off for Antibes to follow in the tracks of V.A. Khaklov and V.K. Cherepnin, the location she discovered turned out really new. And much more “productive” than those found by her predecessors: about one and a half hundred of plant specimen were collected here belonging to at least 16 species. Possibly some of these species are new to science, their detailed investigation is still ahead.

So, 85 million years ago, forests of trees related to modern plane-trees used to grow in the south of Western Siberia instead of today’s taiga and forest-steppe. Apparently, the climate was warm and mild at that time; such trees would not endure the present Siberian winter. How long these deciduous forests existed and what vegetable communities came to take their place - is yet unknown; only new finds of extinct plants’ remains will be able to provide answers to these questions.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>