Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plane-Trees Used To Grow In Siberia 85 Million Years Ago


The Cretaceous that lasted approximately from 135 through 65 million years ago was the period of drastic changes in biosphere. It was at that time that mass extinction of dinosaurs and other reptiles took place; birds and mammals came to take their place. In the early Cretaceous, the first flowering plants appeared, they quickly occupied the dominant position overland and settled in diverse ecotopes. These large-scale processes, thanks to which the Earth gradually acquired the contemporary appearance, draw rapt attention of researchers.

In Western Siberia, only few locations of the Cretaceous plant remains exist, therefore, each new find of them brings the most valuable information on flora evolution in this vast territory. One of such finds was made quite recently, in July 2005, by palaeobotanist Lina Golovneva, specialist of the Komarov Botanical Institute, Russian Academy of Sciences (St. Petersburg), and her colleagues in the expedition organized with support of the Russian Foundation for Basic Research. The researchers worked near Antibes village in the Kemerovo Region, where on sandy slopes of desolated open pits they found clay interlayers containing multiple imprints of ancient plants’ leaves. According to the preliminary estimate, their age makes approximately 85 million years; they used to grow back in the Coniacian stage of the Cretaceous. Other locations of plants of this age are not yet known in Western Siberia.

The majority of plant remains found near Antibes are imprints of tree leaves known under the scientific name of trochodendroides (which relate to contemporary redbud – a beautiful tree from Japan and China that is also sometimes cultivated in Russian parks) and paraprotophyllum (a close relative to a plane-tree normally growing in the Caucasus, the Crimea and along boulevards of Paris). The bilobate leaves of liriophyllum are found more rarely in this area; their shape reminds that of the North American tulip-tree’s (liriodendron’s ) leaves. There also were discovered imprints of a peculiar fern, resembling Venus’ hair, its reproductive organs however having a totally unique structure.

Strictly speaking, phytolites near Antibes village were for the first time found back at the end of the 20s of the last century by Professor V.A. Khaklov (Tomsk University); at the end of the 30s, they were investigated by student V.K. Cherepnin. Unfortunately, these scientists managed to collect only one and a half dozens of specimen, which is evidently insufficient for a more or less complete characteristic of the ancient flora. The open pit where they found remains of ancient plants does not exist any longer.

Although Lina Golovneva had set off for Antibes to follow in the tracks of V.A. Khaklov and V.K. Cherepnin, the location she discovered turned out really new. And much more “productive” than those found by her predecessors: about one and a half hundred of plant specimen were collected here belonging to at least 16 species. Possibly some of these species are new to science, their detailed investigation is still ahead.

So, 85 million years ago, forests of trees related to modern plane-trees used to grow in the south of Western Siberia instead of today’s taiga and forest-steppe. Apparently, the climate was warm and mild at that time; such trees would not endure the present Siberian winter. How long these deciduous forests existed and what vegetable communities came to take their place - is yet unknown; only new finds of extinct plants’ remains will be able to provide answers to these questions.

Sergey Komarov | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>