Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plane-Trees Used To Grow In Siberia 85 Million Years Ago

04.11.2005


The Cretaceous that lasted approximately from 135 through 65 million years ago was the period of drastic changes in biosphere. It was at that time that mass extinction of dinosaurs and other reptiles took place; birds and mammals came to take their place. In the early Cretaceous, the first flowering plants appeared, they quickly occupied the dominant position overland and settled in diverse ecotopes. These large-scale processes, thanks to which the Earth gradually acquired the contemporary appearance, draw rapt attention of researchers.



In Western Siberia, only few locations of the Cretaceous plant remains exist, therefore, each new find of them brings the most valuable information on flora evolution in this vast territory. One of such finds was made quite recently, in July 2005, by palaeobotanist Lina Golovneva, specialist of the Komarov Botanical Institute, Russian Academy of Sciences (St. Petersburg), and her colleagues in the expedition organized with support of the Russian Foundation for Basic Research. The researchers worked near Antibes village in the Kemerovo Region, where on sandy slopes of desolated open pits they found clay interlayers containing multiple imprints of ancient plants’ leaves. According to the preliminary estimate, their age makes approximately 85 million years; they used to grow back in the Coniacian stage of the Cretaceous. Other locations of plants of this age are not yet known in Western Siberia.

The majority of plant remains found near Antibes are imprints of tree leaves known under the scientific name of trochodendroides (which relate to contemporary redbud – a beautiful tree from Japan and China that is also sometimes cultivated in Russian parks) and paraprotophyllum (a close relative to a plane-tree normally growing in the Caucasus, the Crimea and along boulevards of Paris). The bilobate leaves of liriophyllum are found more rarely in this area; their shape reminds that of the North American tulip-tree’s (liriodendron’s ) leaves. There also were discovered imprints of a peculiar fern, resembling Venus’ hair, its reproductive organs however having a totally unique structure.


Strictly speaking, phytolites near Antibes village were for the first time found back at the end of the 20s of the last century by Professor V.A. Khaklov (Tomsk University); at the end of the 30s, they were investigated by student V.K. Cherepnin. Unfortunately, these scientists managed to collect only one and a half dozens of specimen, which is evidently insufficient for a more or less complete characteristic of the ancient flora. The open pit where they found remains of ancient plants does not exist any longer.

Although Lina Golovneva had set off for Antibes to follow in the tracks of V.A. Khaklov and V.K. Cherepnin, the location she discovered turned out really new. And much more “productive” than those found by her predecessors: about one and a half hundred of plant specimen were collected here belonging to at least 16 species. Possibly some of these species are new to science, their detailed investigation is still ahead.

So, 85 million years ago, forests of trees related to modern plane-trees used to grow in the south of Western Siberia instead of today’s taiga and forest-steppe. Apparently, the climate was warm and mild at that time; such trees would not endure the present Siberian winter. How long these deciduous forests existed and what vegetable communities came to take their place - is yet unknown; only new finds of extinct plants’ remains will be able to provide answers to these questions.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>