Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists discover new pathway into plant cells

03.11.2005


Researchers at Oregon State University have made a major discovery in basic plant biology that may set the stage for profound advances in plant genetics or biotechnology.


Researchers at Oregon State University have made a major discovery in basic plant biology, using a pathogen of wheat to discover a new pathway into plants cells. This may allow important advances in biotechnology. This microscopic image shows a toxin in wheat cells and the toxin structure.



The scientists have identified for the first time a protein that can cross plant cell membranes, where it functions as a toxin to kill the cell. It had been known that viruses and bacteria can penetrate cell wall barriers and disrupt plant cells, but never before has a protein been found that could do this by itself.

When more research is done, this may provide a new tool to penetrate plant cells and possibly manipulate their behavior in some beneficial way - to grow faster, resist disease or increase yields.


The findings were published today in two articles in The Plant Cell, a professional journal.

Also of considerable interest is that the biological mechanism discovered here bears striking similarity to the way proteins can function in mammalian cells - scientists say they may have found a characteristic that has been preserved for more than 600 million years, when plants and animals diverged from a common ancestor on their separate evolutionary paths.

"This is a doorway into plant cells that we never knew existed," said Lynda Ciuffetti, an OSU professor of botany and plant pathology. "Viruses and bacteria have been known to bring proteins into cells, but this is just a protein by itself crossing the cell wall barrier without disrupting its integrity. This is a significant fundamental advance in our understanding of plant biology."

The research was done with a pathogenic fungus that causes tan spot of wheat, a costly plant disease that is found around the world, and in some places can cause crop losses ranging up to 50 percent. These fungi produce multiple toxins that attack wheat plants, reducing yields and ruining wheat used as seed. In the United States, it’s a particular problem in the Great Plains and Midwest. Ciuffetti has spent much of her career studying these "host-selective" toxins.

"Until now, we didn’t really know exactly how the protein produced by this fungus was causing disease, whether it was from inside or outside of the plant cells," said Viola Manning, an OSU faculty research assistant and co-author of both publications. "No one had ever shown before that a protein could move, without a pathogen’s assistance, from outside a plant cell to the inside. But in this case, the protein does penetrate the cell membrane and interacts with chloroplasts, ultimately leading to cell death."

The scientists said this mechanism probably will be found in other cells besides wheat, and with other proteins. And while it may lead ultimately to some way to help address this plant disease problem in wheat, the more important discovery is the new pathway into plant cells.

"We still don’t know exactly how the protein penetrates the cell, but it’s clear that it does," said Andrew Karplus, an OSU professor of biochemistry and biophysics. "And with work done by a graduate student, Ganapathy Sarma, we also now have a clear understanding of what the molecular structure of the toxin looks like. With continued research, we should not only be able to determine how the protein is getting into the cell, but also remove the toxic effect associated with it.

"What that would leave us with is a type of delivery vehicle, a completely new way to deliver compounds inside of a plant cell and target specific genes. This is a new and unprecedented insight into how plants can work."

The process of proteins getting inside of cells and affecting their behavior is common in animal cells, the scientists said. For instance, that’s how the AIDS virus causes its damage. But the same process had never before been shown to exist in plant cells, which have been evolving separately from animals for hundreds of millions of years.

With a new delivery mechanism such as this, applied research could be done either to help or harm plant cells - by increasing or controlling their growth, or introducing new characteristics.

The research was supported by the National Science Foundation and the National Research Initiative of the Cooperative State Research, Education and Extension Service, an agency of the U.S. Department of Agriculture.

About OSU research: The Department of Biochemistry and Biophysics in the OSU College of Science does research on the biology of cancer, aging, Amyotrophic Lateral Sclerosis (also known as Lou Gehrig’s Disease), heart and spinal cord development, atherosclerosis, and many other major human health and agricultural issues. The Department of Botany and Plant Pathology leads university education and research efforts in plant disease, physiology, genetics, marine and aquatic botany, botanical taxonomy and other important fields.

Lynda Ciuffetti | EurekAlert!
Further information:
http://www.science.oregonstate.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>