Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists discover new pathway into plant cells

03.11.2005


Researchers at Oregon State University have made a major discovery in basic plant biology that may set the stage for profound advances in plant genetics or biotechnology.


Researchers at Oregon State University have made a major discovery in basic plant biology, using a pathogen of wheat to discover a new pathway into plants cells. This may allow important advances in biotechnology. This microscopic image shows a toxin in wheat cells and the toxin structure.



The scientists have identified for the first time a protein that can cross plant cell membranes, where it functions as a toxin to kill the cell. It had been known that viruses and bacteria can penetrate cell wall barriers and disrupt plant cells, but never before has a protein been found that could do this by itself.

When more research is done, this may provide a new tool to penetrate plant cells and possibly manipulate their behavior in some beneficial way - to grow faster, resist disease or increase yields.


The findings were published today in two articles in The Plant Cell, a professional journal.

Also of considerable interest is that the biological mechanism discovered here bears striking similarity to the way proteins can function in mammalian cells - scientists say they may have found a characteristic that has been preserved for more than 600 million years, when plants and animals diverged from a common ancestor on their separate evolutionary paths.

"This is a doorway into plant cells that we never knew existed," said Lynda Ciuffetti, an OSU professor of botany and plant pathology. "Viruses and bacteria have been known to bring proteins into cells, but this is just a protein by itself crossing the cell wall barrier without disrupting its integrity. This is a significant fundamental advance in our understanding of plant biology."

The research was done with a pathogenic fungus that causes tan spot of wheat, a costly plant disease that is found around the world, and in some places can cause crop losses ranging up to 50 percent. These fungi produce multiple toxins that attack wheat plants, reducing yields and ruining wheat used as seed. In the United States, it’s a particular problem in the Great Plains and Midwest. Ciuffetti has spent much of her career studying these "host-selective" toxins.

"Until now, we didn’t really know exactly how the protein produced by this fungus was causing disease, whether it was from inside or outside of the plant cells," said Viola Manning, an OSU faculty research assistant and co-author of both publications. "No one had ever shown before that a protein could move, without a pathogen’s assistance, from outside a plant cell to the inside. But in this case, the protein does penetrate the cell membrane and interacts with chloroplasts, ultimately leading to cell death."

The scientists said this mechanism probably will be found in other cells besides wheat, and with other proteins. And while it may lead ultimately to some way to help address this plant disease problem in wheat, the more important discovery is the new pathway into plant cells.

"We still don’t know exactly how the protein penetrates the cell, but it’s clear that it does," said Andrew Karplus, an OSU professor of biochemistry and biophysics. "And with work done by a graduate student, Ganapathy Sarma, we also now have a clear understanding of what the molecular structure of the toxin looks like. With continued research, we should not only be able to determine how the protein is getting into the cell, but also remove the toxic effect associated with it.

"What that would leave us with is a type of delivery vehicle, a completely new way to deliver compounds inside of a plant cell and target specific genes. This is a new and unprecedented insight into how plants can work."

The process of proteins getting inside of cells and affecting their behavior is common in animal cells, the scientists said. For instance, that’s how the AIDS virus causes its damage. But the same process had never before been shown to exist in plant cells, which have been evolving separately from animals for hundreds of millions of years.

With a new delivery mechanism such as this, applied research could be done either to help or harm plant cells - by increasing or controlling their growth, or introducing new characteristics.

The research was supported by the National Science Foundation and the National Research Initiative of the Cooperative State Research, Education and Extension Service, an agency of the U.S. Department of Agriculture.

About OSU research: The Department of Biochemistry and Biophysics in the OSU College of Science does research on the biology of cancer, aging, Amyotrophic Lateral Sclerosis (also known as Lou Gehrig’s Disease), heart and spinal cord development, atherosclerosis, and many other major human health and agricultural issues. The Department of Botany and Plant Pathology leads university education and research efforts in plant disease, physiology, genetics, marine and aquatic botany, botanical taxonomy and other important fields.

Lynda Ciuffetti | EurekAlert!
Further information:
http://www.science.oregonstate.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>