Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies several new bacterial species associated with common infection in women

03.11.2005


Research has implications for improving detection and treatment of bacterial vaginosis and other infections with multiple bacterial sources



Despite being one of the most common infections among women, scientists and doctors know little about the causes of bacterial vaginosis (BV), a usually benign disease that is also linked to serious health problems including pelvic inflammatory disease, an increase in the viral load of HIV from infected women and a two-fold increase in risk for pre-term labor and delivery.

Now researchers at the Fred Hutchinson Cancer Research Center have shed new light on BV by using genetic-sequencing technology to detect several new bacterial species – enough to almost double the number of known strains associated with the infection.


The findings – as well as a related editorial – will be published in the Nov. 3 edition of the New England Journal of Medicine.

These newly described uncultivated bacterial strains could be a reason for BV’s high relapse rate – up to 30 percent – and could lead to the development of new diagnostic tests and better treatment approaches that target some of these novel bacteria. The knowledge also eventually will help doctors determine if particular uncultivated bacterial species are responsible for the serious complications associated with BV, according to David Fredricks, M.D., assistant member of the Infectious Diseases Program at the Hutchinson Center’s Clinical Research Division.

BV is usually harmless and easily treated with antibiotics. Symptoms include malodorous discharge, itching and burning, however, some women with BV have no symptoms. Despite its prevalence (10 percent to 20 percent in Caucasian women and 30 percent to 50 percent in African-American women in the United States) the cause of BV is not well understood by scientists and doctors, Fredricks said.

"With most bacterial infections, you identify what the bacterium is and you treat that bacterium," said Fredricks, who is also an assistant professor in the Division of Allergy and Infectious Disease at the University of Washington School of Medicine. "The problem with BV is we don’t know what we’re treating. We know some of the strains associated with BV, however many strains that are cultured in the lab are not sensitive to the usual antibiotic treatments, yet patients may respond to therapy. We need to find out which bacteria cause BV and why some women either respond to antibiotic treatment or fail to be cured."

Fredricks and colleagues postulated that one reason for BV’s persistent mystery is that scientists haven’t identified the total community of bacteria that causes it. Indeed, the study found that most of the bacterial species detected in vaginal fluid are missed with conventional cultivation methods. The researchers catalogued a total of 35 bacterial species associated with BV, doubling the known species. Nineteen appear to be novel species, the study reported. The study identified three new strains, members of the Clostridium phylum, which researchers named BV-associative bacterium # 1, 2 and 3. They had specificities of 95 percent to 98 percent, meaning their detection in vaginal fluid reliably predicted the presence of BV. On the other hand, not all women with BV harbored these novel Clostridium-like bacteria.

"Numerous bacterial genera identified in this study have not, to our knowledge, been previously detected in the vaginal milieu with the use of cultivation methods," researchers said.

Rather than grow bacteria in a Petri dish –the standard identification method –Fredericks harvested DNA from bacteria, cloned segments of the DNA and used polymerase chain reaction (PCR) assays to analyze and sequence the segments. PCR analysis has a high degree of sensitivity and specificity. What made this possible is that every bacterium has the 16S ribosomal RNA gene, the gene that codes for ribosomes, which are the protein synthesizing machinery of cells.

"The 16S ribosomal RNA gene is unique for each different species of bacterium," said Fredricks. "By knowing the sequence of the gene you can identify the bacterium. We get a sort of molecular bar code." With these read outs, researchers went online to the GenBank database operated by the National Institutes of Health and looked for matches among the bacterial strains catalogued there.

Now that a more complete catalogue of bacterial strains has been assembled, Fredricks said work can begin looking for specific associations between individual species and the more adverse health problems linked to BV.

Fredricks said the larger lesson from PCR analysis is just how complex the human microbial ecosystem is. Other syndromes being investigated using PCR include ulcerative colitis, Crohn’s disease, pneumonia and meningitis.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>