Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies several new bacterial species associated with common infection in women

03.11.2005


Research has implications for improving detection and treatment of bacterial vaginosis and other infections with multiple bacterial sources



Despite being one of the most common infections among women, scientists and doctors know little about the causes of bacterial vaginosis (BV), a usually benign disease that is also linked to serious health problems including pelvic inflammatory disease, an increase in the viral load of HIV from infected women and a two-fold increase in risk for pre-term labor and delivery.

Now researchers at the Fred Hutchinson Cancer Research Center have shed new light on BV by using genetic-sequencing technology to detect several new bacterial species – enough to almost double the number of known strains associated with the infection.


The findings – as well as a related editorial – will be published in the Nov. 3 edition of the New England Journal of Medicine.

These newly described uncultivated bacterial strains could be a reason for BV’s high relapse rate – up to 30 percent – and could lead to the development of new diagnostic tests and better treatment approaches that target some of these novel bacteria. The knowledge also eventually will help doctors determine if particular uncultivated bacterial species are responsible for the serious complications associated with BV, according to David Fredricks, M.D., assistant member of the Infectious Diseases Program at the Hutchinson Center’s Clinical Research Division.

BV is usually harmless and easily treated with antibiotics. Symptoms include malodorous discharge, itching and burning, however, some women with BV have no symptoms. Despite its prevalence (10 percent to 20 percent in Caucasian women and 30 percent to 50 percent in African-American women in the United States) the cause of BV is not well understood by scientists and doctors, Fredricks said.

"With most bacterial infections, you identify what the bacterium is and you treat that bacterium," said Fredricks, who is also an assistant professor in the Division of Allergy and Infectious Disease at the University of Washington School of Medicine. "The problem with BV is we don’t know what we’re treating. We know some of the strains associated with BV, however many strains that are cultured in the lab are not sensitive to the usual antibiotic treatments, yet patients may respond to therapy. We need to find out which bacteria cause BV and why some women either respond to antibiotic treatment or fail to be cured."

Fredricks and colleagues postulated that one reason for BV’s persistent mystery is that scientists haven’t identified the total community of bacteria that causes it. Indeed, the study found that most of the bacterial species detected in vaginal fluid are missed with conventional cultivation methods. The researchers catalogued a total of 35 bacterial species associated with BV, doubling the known species. Nineteen appear to be novel species, the study reported. The study identified three new strains, members of the Clostridium phylum, which researchers named BV-associative bacterium # 1, 2 and 3. They had specificities of 95 percent to 98 percent, meaning their detection in vaginal fluid reliably predicted the presence of BV. On the other hand, not all women with BV harbored these novel Clostridium-like bacteria.

"Numerous bacterial genera identified in this study have not, to our knowledge, been previously detected in the vaginal milieu with the use of cultivation methods," researchers said.

Rather than grow bacteria in a Petri dish –the standard identification method –Fredericks harvested DNA from bacteria, cloned segments of the DNA and used polymerase chain reaction (PCR) assays to analyze and sequence the segments. PCR analysis has a high degree of sensitivity and specificity. What made this possible is that every bacterium has the 16S ribosomal RNA gene, the gene that codes for ribosomes, which are the protein synthesizing machinery of cells.

"The 16S ribosomal RNA gene is unique for each different species of bacterium," said Fredricks. "By knowing the sequence of the gene you can identify the bacterium. We get a sort of molecular bar code." With these read outs, researchers went online to the GenBank database operated by the National Institutes of Health and looked for matches among the bacterial strains catalogued there.

Now that a more complete catalogue of bacterial strains has been assembled, Fredricks said work can begin looking for specific associations between individual species and the more adverse health problems linked to BV.

Fredricks said the larger lesson from PCR analysis is just how complex the human microbial ecosystem is. Other syndromes being investigated using PCR include ulcerative colitis, Crohn’s disease, pneumonia and meningitis.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>