Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly recognized gene mutation may reduce seeds, resurrect plants

02.11.2005


A mutated plant that seems to return from the dead may hold the secret to how some flora protect their progeny during yield-limiting drought and other stresses, according to Purdue University scientists whose study of the plant led to discovery of a gene.

The gene, called RESURRECTION1 (RST1), has revealed a previously unknown genetic connection between lipid development and embryo development in plants, said Matthew Jenks, lead author of the study and a Purdue plant physiologist.

Lipids play a role in preventing plant dehydration in forming cells’ membranes, in molecular signaling and in energy storage. A still-to-be revealed lipid associated with formation of the cuticle that coats plant surfaces may signal whether a seed develops to maturity or is aborted early due to a defective embryo.



"This is interesting because in crop production a number of plants have a problem of reduced yield due to seed or fruit abortion," Jenks said. "It’s thought that plants may abort some of their seeds, especially under stress, to conserve and divert resources to the remaining seeds. So, in a drought situation, for example, plants will get rid of some seeds so that they can support growth of at least a few healthy seeds."

In the November issue of Plant Physiology, Jenks and his team of researchers from the Purdue Department of Horticulture and Landscape Architecture report on the normal gene RST1.

They found the gene while studying a unique surface wax mutant of Arabidopsis, a common laboratory research plant. All plants have a certain amount of wax overlaying leaves and stems.

The abnormal plant, a mutant of RST1, had short, rounded leaves that turned purple during development, and then before flowering, the plant quickly browned and looked dead. It also had a large proportion of small, wrinkled, non-viable seeds with aborted embryos. These contained only 34 percent of the normal amount of lipids.

"It appeared to have died, and I left it in a room for two or three weeks. I was just slow in throwing it away," said Jenks, who also is a member of the Purdue Center for Plant Environmental Stress Physiology. "When I went to throw it away, I noticed it had small shoots coming up as if it had returned to life."

The surprising finding in studying the mutant was that a single gene could affect so many diverse traits, Jenks said. Another somewhat similar mutant Arabidopsis showed alterations only in wax and seed development, but not in the other mutated RST1 traits. This was a major clue that changes in lipid synthesis were somehow altering seed development.

Scientists already know that lipids play an important role in signaling developmental changes in plants and animals, and that other plants and animals, including humans, have genes similar to RST1. Jenks and his team now want to determine the exact role of RST1 in lipid signaling that affects plant development, particularly its role in crop seed self-thinning mechanisms through embryo abortion.

Unlike some other mutants that abort all of its seeds, the mutant RST1 plant aborts only about 70 percent of the seeds, he said.

"RST1 is not required for seed development, but it does influence how seeds develop, perhaps playing a role in regulating the number of seeds a plant will support to maturity," Jenks said. "Seed abortion by plants likely is a tightly regulated process that necessitates allowing some seed loss to conserve resources in a stressful environment without aborting all seeds, which would leave the plant with no healthy offspring."

If researchers learn how to control plant embryo abortion, they may be able to increase yield by helping plants shed fewer seeds, grains or fruits, especially under drought conditions and in other stressful environments.

U.S. Department of Agriculture National Research Initiative and the SALK Institute Genomic Analysis Laboratory provided support for this work.

The other researchers involved in the study were Ray Bressan, Purdue Department of Horticulture and Landscape Architecture professor; Xinbo Chen, Xionglun Liu and Xinlu Chen, all horticulture postdoctoral students; and S. Mark Goodwin, a horticulture doctoral student.

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>