Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What makes the brain tick, tick, tick. . .


The brain is a "time machine," assert Duke neuroscientists Catalin Buhusi and Warren Meck. And understanding how the brain tracks time is essential to understanding all its functions. The brain’s internal clocks coordinate a vast array of activities from communicating, to orchestrating movement, to getting food, they said.

In a review article in the October 2005 Nature Reviews Neuroscience, Buhusi and Meck discuss the current state of understanding of one of the brain’s most important, and mysterious, clocks -- the one governing timing intervals in the seconds to minutes range. Such interval timing occupies the middle neurological ground between two other clocks -- the circadian clock that operates over the 24-hour light-dark cycle, and the millisecond clock that is crucial for such functions as motor control and speech generation and recognition. Meck is a professor and Buhusi is an assistant research professor in the Department of Psychological and Brain Sciences.

Interval timing is central to broader coordination of tasks such as walking, manipulating objects, carrying on a conversation and tracking objects in the environment, they said.

"Interval timing is necessary for us to understand temporal order of events, for example when carrying on a conversation," said Meck. "To understand speech, I not only have to process the millisecond intervals involved in voice onset time, but also the duration of vowels and consonants. Also, to respond, I need to process the pacing of speech, to organize my thoughts coherently and to respond back to you in a timely manner. That’s all interval timing, and in fact it’s hard to find any complex behavioral process that timing isn’t involved in."

Deciphering the neural mechanisms of such clocks may be even more fundamental to understanding the brain than figuring out, for example, neural processing of spatial position and movement, they said.

Said Buhusi, "I would argue that time is more fundamental than space, because one can just close one’s eyes and relive memories, going back in time; or prospectively go forward in time to predict something, without actually changing your position in space."

Understanding the machinery of interval timing is profoundly difficult because it is "amodal," said Buhusi and Meck. That is, the interval timing clock is independent of any sense -- touch, sight, hearing, taste or smell. Thus, it cannot be localized in a discrete brain area, as can the circadian clock, which has clear inputs from the visual system and outputs that control the cyclic release of circadian hormones.

"So, this process has to be distributed so it can integrate information from all the senses," said Meck. "But more importantly, because it’s involved in learning and memory, you could argue that time isn’t directly perceived, but that we make temporal discriminations relative to memories of previous durations. Such features have made the machinery of interval timing more elusive, and some even questioned whether an internal clock of this sort even exists."

In the 1980s Meck and his colleagues at Brown and Columbia Universities proposed what became the traditional theory for explaining interval timing which involved a "pacemaker-accumulator" model. This model holds that somewhere in the brain lurks an independent biological pacemaker that regularly emits neural timing pulses or "ticks." However, more recent research by Meck and his colleagues at Duke, has led to the development of a "striatal beat frequency" model of interval timing involving the "coincidence detection" of oscillatory patterns of neural activity. The striatum is a part of the brain structure known as the basal ganglia, which control basic body functions such as movement.

In this model, explained Buhusi, "each structure in the brain contributes its own resonance, and all these oscillations are monitored and integrated by the basal ganglia or striatal circuits. It’s like a conductor who listens to the orchestra, which is composed of individual musicians. Then, with the beat of his baton, the conductor synchronizes the orchestra so that listeners hear a coordinated sound."

Thus, in essence, the entire brain is an intricate interval timing machine, in which individual structures busy with their own neural tasks, generate resonances that integrate to become ticks of the neural clock.

Meck, Buhusi and their clockwork colleagues are using an array of experimental techniques to try to identify this "baton" timing signal and to refine the theory. These include studies using genetically modified mice, pharmacological tools, recording of electrical brain signals in ensembles of brain cells and functional magnetic resonance imaging of the brain.

For example, they are studying how the clock’s ticking changes in Parkinson’s patients as they change levels of their medication, which effects the amount of dopamine in their brains. Dopamine has been implicated as a key signaling molecule in the neuronal circuitry of the timing machinery.

"When Parkinson’s patients are on their medication, they time quite normally," said Meck. "But as their medication wears off, we can see their clock slow down by recording their brain signals."

Said Meck of their research, "We’re addressing two challenges. One is to find the molecular processes that underlie this internal clock. And the second challenge is to build more realistic models of how this timing process works, with constant, parallel input from throughout the brain." In such studies, the researchers face the daunting process of trying to monitor the intricate swirling of neural activity throughout the entire brain, said Meck.

"Looking at only one place in the brain for the interval clock is like the blind man feeling just the toe of the elephant and trying to describe how it works," he said. "While we’re very excited about our success so far, we want to be modest about our capabilities. We are blind men touching just one part of this elephant that is time.

"And our new review paper, to the best of our knowledge, is the first to try to integrate the different fields and levels of analysis that contribute to understanding timing and time perception, to help advance this exciting field."

Dennis Meredith | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>