Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes the brain tick, tick, tick. . .

31.10.2005


The brain is a "time machine," assert Duke neuroscientists Catalin Buhusi and Warren Meck. And understanding how the brain tracks time is essential to understanding all its functions. The brain’s internal clocks coordinate a vast array of activities from communicating, to orchestrating movement, to getting food, they said.



In a review article in the October 2005 Nature Reviews Neuroscience, Buhusi and Meck discuss the current state of understanding of one of the brain’s most important, and mysterious, clocks -- the one governing timing intervals in the seconds to minutes range. Such interval timing occupies the middle neurological ground between two other clocks -- the circadian clock that operates over the 24-hour light-dark cycle, and the millisecond clock that is crucial for such functions as motor control and speech generation and recognition. Meck is a professor and Buhusi is an assistant research professor in the Department of Psychological and Brain Sciences.

Interval timing is central to broader coordination of tasks such as walking, manipulating objects, carrying on a conversation and tracking objects in the environment, they said.


"Interval timing is necessary for us to understand temporal order of events, for example when carrying on a conversation," said Meck. "To understand speech, I not only have to process the millisecond intervals involved in voice onset time, but also the duration of vowels and consonants. Also, to respond, I need to process the pacing of speech, to organize my thoughts coherently and to respond back to you in a timely manner. That’s all interval timing, and in fact it’s hard to find any complex behavioral process that timing isn’t involved in."

Deciphering the neural mechanisms of such clocks may be even more fundamental to understanding the brain than figuring out, for example, neural processing of spatial position and movement, they said.

Said Buhusi, "I would argue that time is more fundamental than space, because one can just close one’s eyes and relive memories, going back in time; or prospectively go forward in time to predict something, without actually changing your position in space."

Understanding the machinery of interval timing is profoundly difficult because it is "amodal," said Buhusi and Meck. That is, the interval timing clock is independent of any sense -- touch, sight, hearing, taste or smell. Thus, it cannot be localized in a discrete brain area, as can the circadian clock, which has clear inputs from the visual system and outputs that control the cyclic release of circadian hormones.

"So, this process has to be distributed so it can integrate information from all the senses," said Meck. "But more importantly, because it’s involved in learning and memory, you could argue that time isn’t directly perceived, but that we make temporal discriminations relative to memories of previous durations. Such features have made the machinery of interval timing more elusive, and some even questioned whether an internal clock of this sort even exists."

In the 1980s Meck and his colleagues at Brown and Columbia Universities proposed what became the traditional theory for explaining interval timing which involved a "pacemaker-accumulator" model. This model holds that somewhere in the brain lurks an independent biological pacemaker that regularly emits neural timing pulses or "ticks." However, more recent research by Meck and his colleagues at Duke, has led to the development of a "striatal beat frequency" model of interval timing involving the "coincidence detection" of oscillatory patterns of neural activity. The striatum is a part of the brain structure known as the basal ganglia, which control basic body functions such as movement.

In this model, explained Buhusi, "each structure in the brain contributes its own resonance, and all these oscillations are monitored and integrated by the basal ganglia or striatal circuits. It’s like a conductor who listens to the orchestra, which is composed of individual musicians. Then, with the beat of his baton, the conductor synchronizes the orchestra so that listeners hear a coordinated sound."

Thus, in essence, the entire brain is an intricate interval timing machine, in which individual structures busy with their own neural tasks, generate resonances that integrate to become ticks of the neural clock.

Meck, Buhusi and their clockwork colleagues are using an array of experimental techniques to try to identify this "baton" timing signal and to refine the theory. These include studies using genetically modified mice, pharmacological tools, recording of electrical brain signals in ensembles of brain cells and functional magnetic resonance imaging of the brain.

For example, they are studying how the clock’s ticking changes in Parkinson’s patients as they change levels of their medication, which effects the amount of dopamine in their brains. Dopamine has been implicated as a key signaling molecule in the neuronal circuitry of the timing machinery.

"When Parkinson’s patients are on their medication, they time quite normally," said Meck. "But as their medication wears off, we can see their clock slow down by recording their brain signals."

Said Meck of their research, "We’re addressing two challenges. One is to find the molecular processes that underlie this internal clock. And the second challenge is to build more realistic models of how this timing process works, with constant, parallel input from throughout the brain." In such studies, the researchers face the daunting process of trying to monitor the intricate swirling of neural activity throughout the entire brain, said Meck.

"Looking at only one place in the brain for the interval clock is like the blind man feeling just the toe of the elephant and trying to describe how it works," he said. "While we’re very excited about our success so far, we want to be modest about our capabilities. We are blind men touching just one part of this elephant that is time.

"And our new review paper, to the best of our knowledge, is the first to try to integrate the different fields and levels of analysis that contribute to understanding timing and time perception, to help advance this exciting field."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>