Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forsyth scientists identify a gene responsible for facial diversity

27.10.2005


Research with cichlid fish offers support for a gene that regulates craniofacial diversity



Researchers at the Forsyth Institute have discovered that the genes that influence the jaws of cichlid fish, tropical freshwater fish renowned for head shape diversity, offer insight into overall vertebrate diversity. The scientific studies led by R. Craig Albertson, PhD., Staff Associate, show that the growth factor gene, bmp4, is both associated with and has the potential to alter jaw morphology in a way that approximates natural variation among fish species.

According to Dr. Albertson, "An understanding of the genetic factors that regulate bone shape is also vital to a better diagnostic comprehension of human craniofacial defects, and could lead to the development of biological therapies for facial traumas."


African cichlid fishes have evolved highly specialized modes of feeding through extensive adaptations of their jaws. This study, published in the current issue of Proceedings of the National Academy of the Sciences, (PNAS), explores the molecular basis of alternate jaw types in this species-rich group.

The opening and closing lever mechanisms of the lower jaw have traditionally been used to describe feeding techniques in bony fishes. Quantitative genetic analyses in cichlids demonstrate that opening and closing jaw mechanisms are regulated by distinct genetic factors, and are free to evolve independently. Allelic variations in bmp4 segregates with the mechanical advantage of closing. Further, species-specific differences in cichlid jaw shape are correlated with different patterns of bmp4 expression in the embryonic jaw. Finally, when bmp4 is over-expressed in a developmental model organism, the zebrafish, jaw shape changes in a way that parallels natural variation among cichlid species.

"This work provides new insights into the mechanisms that underlie biodiversity," Albertson said. "Moreover, our results show interesting parallels with recent work in another evolutionary model, Galapagos finches." In both studies bmp4 is implicated as underlying adaptive variation in jaw shape. Higher levels of bmp4 result in thicker jaws, whereas lower levels are associated with thinner jaws. The fact that bmp4 may underlie morphological diversity in both birds and fishes, raises the interesting possibility that it might play a broader role in vertebrate evolution."

"Superficial similarities between these two systems may be similar on a molecular level," Albertson adds. "This research is exciting on several levels. We now have the opportunity to explore what genes make a head, and which genes create variations in head shape. Furthermore, this work will help us gain a better understanding of, and offer possibilities for preserving biodiversity of species."

R. Craig Albertson is a Staff Associate and a member of the laboratory of Pamela C. Yelick, Ph.D. in The Forsyth Institute Department of Cytokine Biology. His work is supported through a National Institute of Health training grant awarded to the Forsyth Institute.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>