Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unpick genetics of first 15 minutes of life

27.10.2005


Scientists have identified the gene responsible for controlling a first key step in the creation of new life, according to new research published in the journal Nature tomorrow (Thursday 27 October 2005).



The gene, known as HIRA, ‘chaperones’ the early processes that take place once a sperm enters an egg, giving it a crucial role in the most fundamental process in sexually reproducing animals.

The absence or mutation of this gene in the maternal (mother’s) genome explains why eggs fail to produce a zygote – or early embryo - despite the presence of ‘healthy’ sperm.


Although the researchers use the fruit fly Drosophila melanogaster to discover the basic genetic processes of sex, the same genetic processes are present in all sexually reproducing animals, including humans.

“All sexually reproducing animals do the same kind of DNA ‘dance’ when the DNA from the mother’s egg cell and the father’s sperm cell meet for the first time,” said Dr Tim Karr from the University of Bath (UK) who worked closely with Drs Benjamin Loppin and Pierre Couble from Centre de Génétique Moléculaire et Cellulaire (France) on the project.

“When the sperm enters the egg, the DNA it carries needs to be re-packaged so that it can engage in normal cellular activities, including combining with the maternal DNA in the first act of genetic fertilisation.

“A single gene, HIRA, looks after this re-packaging process, making it fundamental for those first 15 minutes in the regeneration of a new life.”

When sperm cells are created, the molecule that the sperm DNA is wrapped around (called chromatin) is remodelled by swapping the type of ‘packing material’, known as histone proteins, it contains.

When it arrives at the egg cell, however, the sperm DNA needs to be re-packaged with a new set of histone proteins so that the sperm DNA can engage in normal cellular activities. The result is called the male pro-nucleus.

To understand how this process occurs, the researchers used a type of mutant fruit fly, known to biologists as a sésame mutant, which they know does not form a proper male pro-nucleus.

By highlighting the chromatin and watching the changes it goes through at different stages of the fertilisation process, the scientists found that the pro-nucleus in sésame mutant is wound into a tight ball that could not interact with its female counterpart, the egg pro-nucleus.

This showed that there was a problem with the re-packaging process in the sésame mutant.

The researchers looked at the genetic makeup of the sésame mutant and identified what is known as a point mutation in the HIRA gene – showing that HIRA is the gene responsible for chaperoning the assembly of the sperm pro-nucleus.

“This is one of the most crucial process that takes place in sexually reproducing animals,” said Dr Karr who works in the Department of Biology and Biochemistry at the University of Bath.

“Sperm DNA has to undergo a complete transformation when it arrives in the egg cell so that it can properly join with the female pronucleus to form a new genetically complete life form.

“A slight mutation in the HIRA gene means that life does not even get started.

“Amazingly we still know relatively little about the structure of sperm DNA and the genetic processes involved in the most crucial early phases of reproduction.”

Because of the particular type of histone protein used in the re-packaging of sperm DNA, the researchers believe that this process leaves its mark in the genome of the newly-formed organism.

This genetic marker could be a useful way of tracking the genetic material an offspring inherits from either their father or mother.

The research was funded by a Wolfson Royal Society Merit Award, the Centre National de la Recherche Scientifique and the French Ministry of Research.

Andrew McLaughlin | EurekAlert!
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/news/releases

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>