Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unpick genetics of first 15 minutes of life

27.10.2005


Scientists have identified the gene responsible for controlling a first key step in the creation of new life, according to new research published in the journal Nature tomorrow (Thursday 27 October 2005).



The gene, known as HIRA, ‘chaperones’ the early processes that take place once a sperm enters an egg, giving it a crucial role in the most fundamental process in sexually reproducing animals.

The absence or mutation of this gene in the maternal (mother’s) genome explains why eggs fail to produce a zygote – or early embryo - despite the presence of ‘healthy’ sperm.


Although the researchers use the fruit fly Drosophila melanogaster to discover the basic genetic processes of sex, the same genetic processes are present in all sexually reproducing animals, including humans.

“All sexually reproducing animals do the same kind of DNA ‘dance’ when the DNA from the mother’s egg cell and the father’s sperm cell meet for the first time,” said Dr Tim Karr from the University of Bath (UK) who worked closely with Drs Benjamin Loppin and Pierre Couble from Centre de Génétique Moléculaire et Cellulaire (France) on the project.

“When the sperm enters the egg, the DNA it carries needs to be re-packaged so that it can engage in normal cellular activities, including combining with the maternal DNA in the first act of genetic fertilisation.

“A single gene, HIRA, looks after this re-packaging process, making it fundamental for those first 15 minutes in the regeneration of a new life.”

When sperm cells are created, the molecule that the sperm DNA is wrapped around (called chromatin) is remodelled by swapping the type of ‘packing material’, known as histone proteins, it contains.

When it arrives at the egg cell, however, the sperm DNA needs to be re-packaged with a new set of histone proteins so that the sperm DNA can engage in normal cellular activities. The result is called the male pro-nucleus.

To understand how this process occurs, the researchers used a type of mutant fruit fly, known to biologists as a sésame mutant, which they know does not form a proper male pro-nucleus.

By highlighting the chromatin and watching the changes it goes through at different stages of the fertilisation process, the scientists found that the pro-nucleus in sésame mutant is wound into a tight ball that could not interact with its female counterpart, the egg pro-nucleus.

This showed that there was a problem with the re-packaging process in the sésame mutant.

The researchers looked at the genetic makeup of the sésame mutant and identified what is known as a point mutation in the HIRA gene – showing that HIRA is the gene responsible for chaperoning the assembly of the sperm pro-nucleus.

“This is one of the most crucial process that takes place in sexually reproducing animals,” said Dr Karr who works in the Department of Biology and Biochemistry at the University of Bath.

“Sperm DNA has to undergo a complete transformation when it arrives in the egg cell so that it can properly join with the female pronucleus to form a new genetically complete life form.

“A slight mutation in the HIRA gene means that life does not even get started.

“Amazingly we still know relatively little about the structure of sperm DNA and the genetic processes involved in the most crucial early phases of reproduction.”

Because of the particular type of histone protein used in the re-packaging of sperm DNA, the researchers believe that this process leaves its mark in the genome of the newly-formed organism.

This genetic marker could be a useful way of tracking the genetic material an offspring inherits from either their father or mother.

The research was funded by a Wolfson Royal Society Merit Award, the Centre National de la Recherche Scientifique and the French Ministry of Research.

Andrew McLaughlin | EurekAlert!
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/news/releases

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>