Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unpick genetics of first 15 minutes of life

27.10.2005


Scientists have identified the gene responsible for controlling a first key step in the creation of new life, according to new research published in the journal Nature tomorrow (Thursday 27 October 2005).



The gene, known as HIRA, ‘chaperones’ the early processes that take place once a sperm enters an egg, giving it a crucial role in the most fundamental process in sexually reproducing animals.

The absence or mutation of this gene in the maternal (mother’s) genome explains why eggs fail to produce a zygote – or early embryo - despite the presence of ‘healthy’ sperm.


Although the researchers use the fruit fly Drosophila melanogaster to discover the basic genetic processes of sex, the same genetic processes are present in all sexually reproducing animals, including humans.

“All sexually reproducing animals do the same kind of DNA ‘dance’ when the DNA from the mother’s egg cell and the father’s sperm cell meet for the first time,” said Dr Tim Karr from the University of Bath (UK) who worked closely with Drs Benjamin Loppin and Pierre Couble from Centre de Génétique Moléculaire et Cellulaire (France) on the project.

“When the sperm enters the egg, the DNA it carries needs to be re-packaged so that it can engage in normal cellular activities, including combining with the maternal DNA in the first act of genetic fertilisation.

“A single gene, HIRA, looks after this re-packaging process, making it fundamental for those first 15 minutes in the regeneration of a new life.”

When sperm cells are created, the molecule that the sperm DNA is wrapped around (called chromatin) is remodelled by swapping the type of ‘packing material’, known as histone proteins, it contains.

When it arrives at the egg cell, however, the sperm DNA needs to be re-packaged with a new set of histone proteins so that the sperm DNA can engage in normal cellular activities. The result is called the male pro-nucleus.

To understand how this process occurs, the researchers used a type of mutant fruit fly, known to biologists as a sésame mutant, which they know does not form a proper male pro-nucleus.

By highlighting the chromatin and watching the changes it goes through at different stages of the fertilisation process, the scientists found that the pro-nucleus in sésame mutant is wound into a tight ball that could not interact with its female counterpart, the egg pro-nucleus.

This showed that there was a problem with the re-packaging process in the sésame mutant.

The researchers looked at the genetic makeup of the sésame mutant and identified what is known as a point mutation in the HIRA gene – showing that HIRA is the gene responsible for chaperoning the assembly of the sperm pro-nucleus.

“This is one of the most crucial process that takes place in sexually reproducing animals,” said Dr Karr who works in the Department of Biology and Biochemistry at the University of Bath.

“Sperm DNA has to undergo a complete transformation when it arrives in the egg cell so that it can properly join with the female pronucleus to form a new genetically complete life form.

“A slight mutation in the HIRA gene means that life does not even get started.

“Amazingly we still know relatively little about the structure of sperm DNA and the genetic processes involved in the most crucial early phases of reproduction.”

Because of the particular type of histone protein used in the re-packaging of sperm DNA, the researchers believe that this process leaves its mark in the genome of the newly-formed organism.

This genetic marker could be a useful way of tracking the genetic material an offspring inherits from either their father or mother.

The research was funded by a Wolfson Royal Society Merit Award, the Centre National de la Recherche Scientifique and the French Ministry of Research.

Andrew McLaughlin | EurekAlert!
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/news/releases

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>