Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expression Project for Oncology (expO) collects 1,000th malignant tumor specimen

25.10.2005


Clinically annotated results are publicly available online



The International Genomics Consortium’s (IGC) Expression Project for Oncology (expO) today announced that it has collected its 1,000th frozen cancer specimen, which exceeds original expectations for the project while marking a milestone that is recognized by researchers, industry and academia. Gene expression analysis with clinical information on hundreds of these specimens is now publicly available online.

The purpose of expO is to obtain cancer tissue samples under uniform and standardized conditions, perform gene expression analyses, and collect the long-term clinical outcome of the patient. The data is both collected and shared in a way to ensure the protection of patient confidentiality, while still making the "de-identified" information available online for researchers worldwide. Open and free access to the data will accelerate genetic discoveries and the development of tests and therapies.


"We overcame many challenges to perform complete gene analyses and to have the information freely available online, while also ensuring that we had addressed key issues of patient privacy and consent is a major step forward," said Robert Penny, M.D., Ph.D., Executive Director of expO and Chief Medical Officer of IGC. "Going from zero to 1,000 tumor samples in 16 months was also a considerable feat."

IGC has established a standardization system for obtaining and processing these tumor samples. This standardization of the collection, analysis, and vocabularies will help accelerate future development of new, targeted cancer treatments.

Tissue collection and data dissemination is conducted in a manner that fully protects patient privacy. Over a three-year period, IGC expects to obtain 2,000 to 3,000 tumor specimens representing a broad spectrum of malignancies and 500-1,000 normal tissues. The project is well on its way to meeting this goal. So far, IGC has collected a total of 5,083 biospecimens including frozen biosamples and paraffin tissue blocks containing normal, paranormal and malignant tissue and peripheral blood samples.

"What IGC has accomplished in terms of the expO project could potentially accelerate cancer research," said Franklyn G. Prendergast, M.D., Ph.D., Director of the Mayo Clinic Cancer Center and the Edmond and Marion Guggenheim Professor of Biochemistry and Molecular Biology at the Mayo Medical School. "This publicly available database provides researchers with access to a vast amount of useful cancer information that will ultimately help the community advance its search for new treatments for this devastating disease."

The success of this national philanthropic initiative is due in part to the leadership, vision, and financial support of GlaxoSmithKline, Bristol-Myers Squibb and Wyeth pharmaceuticals.

"The expO database illustrates how industry can partner with academia, hospitals, and non-profit medical research organizations to create a freely available resource that will promote and accelerate discovery.," said Nicholas C. Dracopoli, Ph.D., Vice President of Clinical Discovery Technologies at Bristol-Myers Squibb.

The clinically annotated dataset is available in the public domain through the National Center for Biotechnology Information web site at www.ncbi.nlm.nih.gov/geo/.

Galen Perry | EurekAlert!
Further information:
http://www.tgen.org
http://www.ncbi.nlm.nih.gov/geo/
http://www.intgen.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>