Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian-Style Hunting For Helicobacter Pylori

24.10.2005


Due to the 2005 Nobel Prize in physiology and medicine received by Robin Warren and Barry Marshall, the name of the Helicobacter pylori bacterium is now a buzz word. According to contemporary overview, the bacterium gets into the stomach with food and water. In adverse conditions (stress, malnutrition, genetic factors, etc.), the bacterium invades the wall of the stomach or the duodenum under the mucous membrane and produces toxins destroying the walls. This is how gastritis originates, turning into ulcer.



It is fair to say that the Helicobacter pylori bacterium does not cause gastritis and ulcer with all their hosts. There will always be some percentage of people resistant to some bacterium or virus. But if gastritis or ulcer symptoms are clear, then it is sufficient to determine the Helicobacter pylori presence to start treatment (which is by the way well-developed).

Previously, to diagnose the disease, patients had to endure an extremely unpleasant procedure (gastroscopy) –swallowing a stomach pump. The procedure is not only unpleasant, but also dangerous: it traumatizes the larynx and esophagus. Besides, a stomach pump can bring some infection in the patient’s organism if it has not been properly sterilized.


Researchers from the Branch of the Karpov Physicochemical Research Institute (Obninsk) suggest their own technique for hunting the Helicobacter pylori. The technique is based on the bacterium’s propensity, the bacteria is fond of urea and decomposes it quickly, carbonic acid gas being formed along with that. The patient can be offered some urea and then the content of his/her exhalation can be researched. But the problem is that we always breathe out carbonic acid.

The Obninsk researchers suggest that carbonic acid from urea should be “marked” - the C-14 radioactive isotope of carbon should be introduced in the urea. It is sufficient to add to urea insignificant quantities of the “marked” urea to make the method work. The analysis looks as follows: the patient swallows an ordinary capsule containing a small shot of “Uracaps C-14” preparation. If the Helicobacter pylori lives in the patient’s stomach, it would start to decompose urea intensely. 20 minutes later, the patient is offered to breathe out into the dryer tube (similar to the alcohol test tube). Then special absorption solution washes up the tube content, a little liquid is placed on the plate and the substance activity is observed on the beta-spectrometer. If the patient’s exhalation contains “marked” carbonic acid, the spectrometer would immediately recognize that, and the computer will produce the analysis outcome: whether the bacteria are present in the stomach or not.

“Many people are scared of the word “radioactive”, says Yuri Sorokin. But in this case, we deal with a negligible dose: a capsule of the “Uracaps C-14” preparation is equivalent to a person’s stay in common sunlight for 12 hours. Nevertheless, we are now developing the special “Carbocaps C-13” preparation for children and pregnant women. It contains nonradioactive carbon isotope C-13, but it can be identified in the exhalation only with the help of the NMR-spectrometer .”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Bacterial Nanosized Speargun Works Like a Power Drill
26.09.2017 | Universität Basel

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>