Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford study reveals protein’s Jekyll-and-Hyde role in cancer growth

21.10.2005


Tumor-suppressor proteins work to inhibit tumor growth in our bodies and when they win, they spare us a battle with cancer. But one such protein, menin, appears to have a split personality. Though menin is well-known for its ability to suppress endocrine tumors, researchers at Stanford University School of Medicine have discovered that it is also a key player in the development of some forms of acute leukemia.



The researchers, who made the discovery in working with mouse cells, say this is the first time a tumor-suppressor protein has been found to have such a dramatic dual role. But there may be a silver lining in menin’s dark side - understanding the mechanism could open up new avenues of treatment for the very leukemias that menin promotes.

Normally menin binds with another protein, known as MLL, in the nucleus of a cell, where the two are part of a complex of proteins that promote proper cell growth. But when MLL is mutated, it becomes a cancer-promoting oncoprotein. Usually this would put the tumor suppressor and the oncoprotein in direct conflict, as each sought to overwhelm the other, but not so in cases of acute leukemia. "We’ve discovered a situation where they’re not antagonizing each other’s actions, they’re actually working together," said Michael Cleary, MD, professor of pathology and of pediatrics and senior author of the paper published in the Oct. 21 issue of Cell.


When the blood system is functioning properly, the menin and the normal MLL proteins work together constructively, helping guide cells through all the stages of development from their beginnings as blood-forming stem cells to final maturation, or differentiation, into blood cells. But when MLL is mutated, the differentiation process stalls at an intermediate stage and the immature cells begin proliferating uncontrollably.

Given that menin is highly effective in suppressing endocrine tumors, Cleary and first author Akihiko Yokoyama, a postdoctoral scholar in pathology, suspected that MLL was somehow deactivating menin’s suppressive powers. They tested the theory with mouse cells in vitro by introducing the mutated MLL oncoprotein and letting leukemia begin to thrive. Yokoyama then genetically removed menin from the cancer cells.

If menin and MLL were struggling against each other, the researchers reasoned that removing menin would either have no effect on the rate of proliferation, or the leukemia would run even wilder, flourishing without restraint. But the leukemia ground to a halt.

"The cells actually stopped proliferating," said Yokoyama, adding, "If you had to predict the outcome, you would’ve predicted exactly the opposite of what occurred."

Even more unexpected was what happened next - the former cancer cells matured. Like juvenile delinquents steered away from a life of crime when a bad influence is removed, the immature blood cells not only ceased their bad behavior once the menin was gone, they resumed productive lives. They completed the differentiation process and became mature blood cells. The leukemia disappeared without a single cancer cell being killed.

Further work by Yokoyama established that menin was actively involved in promoting the acute leukemia, rather than simply being passive raw material for MLL to use. "This is the first example that we know of where an oncoprotein and a tumor-suppressor protein are physically working together to promote cancer," said Cleary.

Exactly what causes menin to behave as it does in acute leukemia isn’t clear. What at first appears to be Jekyll-and-Hyde behavior may simply be a matter of slavish devotion to its mission, with the protein plying the only trade it knows regardless of whether its actions inhibit cancer or, in the case of acute leukemia, promote it.

Not knowing just how menin does what it does, the researchers said it’s difficult to speculate whether similar processes could be happening elsewhere in the human body. But the findings offer tantalizing possibilities for pursuing new treatments for MLL-associated acute leukemias, which make up between 5 and 10 percent of all leukemias in both adults and children. Acute leukemias associated with MLL oncoproteins are extremely aggressive and patients generally don’t respond well to conventional treatments.

But the stunning reversal of leukemia in the mouse cells when menin was removed offers clues for developing treatments. If the team’s findings can be applied to humans, "we would probably stop a leukemia dead in its tracks," said Cleary. There’s a lot more that needs to be learned before that could be attempted, but Yokomama and Cleary are cautiously optimistic.

"We’re chipping away at the molecular mechanism for how the MLL oncoprotein works," said Cleary. "The more basic knowledge we have, the more chance we have of designing more effective and specific treatments."

Other Stanford researchers involved in the study are Tim Somervaille, MD, PhD, postdoctoral scholar in pathology, and Kevin Smith, PhD, basic life science research associate in pathology.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>