Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis progression linked to immune-cell substance

20.10.2005


A new study suggests that a substance made by immune cells plays a key role in the progression of a disease in animals that closely mimics multiple sclerosis (MS). The findings further suggest that blocking the molecule, known as macrophage migration inhibitory factor (MIF) might prevent the progression of the disease.



Researchers at The Ohio State University Medical Center conducted the study using mice that develop a disease that mimics MS. They compared these animals to similar mice that lacked MIF, an immune-system signaling molecule.

The results show that the animals without MIF develop the initial, acute phase of the disease, but then show no signs of further progression.


The study is published as a Cutting Edge paper in the November 1, 2005, issue of the Journal of Immunology.

“Our results suggest that MIF may be less important for initiating MS, but that it may be necessary for MS progression,” says principal investigator Caroline C. Whitacre, professor of molecular virology, immunology and medical genetics.

“These findings indicate that in the future we can perhaps use MIF levels to predict the onset of a relapse. But more importantly, perhaps this study will lead to drugs that can halt the course of MS by blocking the action of MIF.”

MS is an inflammatory, autoimmune disease which primarily affects the brain and spinal cord. Autoimmune diseases occur when the body’s own immune cells destroy tissues in the body. In MS, immune cells destroy the myelin sheath that surrounds nerve fibers in the brain and spinal cord. Myelin is a fatty substance that insulates nerve fibers and enables them to transmit impulses.

According to the National MS Society, about 400,000 Americans are living with MS and about 10,400 new cases are diagnosed yearly. The disease usually strikes between the ages of 20 and 40, and it is more common in women. MS symptoms vary from person to person. Some individuals experience unusual fatigue, numbness and tingling; others can have loss of balance and difficulty walking; still others develop slurred speech, double vision, tremors or bladder problems.

In about 85 percent of cases, MS shows a pattern of remission and relapse, with no warning as to when a relapse will occur.

For this study, Whitacre and a group of colleagues used mice that develop the MS-like condition known as experimental autoimmune encephalomyelitis (EAE). The mice develop the disease after being inoculated with a myelin protein. The researchers compared these mice to mice that were identical except that they lacked the gene for MIF.

After inoculation, the mice with the MIF gene showed progressive EAE. In contrast, the mice lacking the MIF gene showed signs of early disease, but after about 20 days, these mice recovered and showed no further sign of progression.

The study also gave the investigators insights into the mechanism by which MIF influences the course of disease. They found that MIF blocked the steroid hormone, corticosterone (known as cortisol, in humans). Animals missing MIF had high levels of the steroid, while those with MIF showed very low levels.

The level of the steroid hormone, in turn, caused important immune-system changes in the animals that are likely to affect the disease.

For example, the mice with MIF (and low levels of the steroid hormone) showed high levels of immune-system cytokines or products that promote inflammation. Mice that lacked MIF (and had high levels of the steroid), on the other hand, showed high levels of immune-system cytokines or products that suppress inflammation .

“Our evidence overall suggests that the inhibition of this steroid hormone by MIF has an important influence on the immune system and in determining whether the disease progresses or not,” Whitacre says.

Funding from the National Institute of Allergy and Infectious Diseases supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

nachricht Snap, Digest, Respire
20.01.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>