Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust storms may carry bacteria to Japan from China

20.10.2005


Bacteria found in soil around Tokyo are not indigenous to the area. A study published in the open access journal Saline Systems reveals a large proportion of salt-loving bacteria in non-saline soil around Tokyo. The researchers suggest that dust storms may have carried the bacteria from their natural habitats in China.

Akinobu Echigo and colleagues, from Toyo University and the Noda Institute for Scientific Research in Japan, analysed bacteria found in non-saline soil collected in gardens, fields and roadways in the Tokyo area. From their soil samples, they isolated halophilic bacteria - bacteria that are able to survive in a high-salt environment - by growing the bacteria in a culture medium with a salt concentration of at least 20%.

Their results show that approximately 1 in 200,000 of the bacteria found in the soil samples were halophilic, and the bacteria came from at least seven different families.



Halophilic bacteria thrive in environments where the average concentration of salt is 3-15%. The salt concentration in the soil the authors analysed was 20 to 100 times lower than that, and it seems unlikely that the halophilic bacteria found in this soil originated there. Most of the halophilic bacteria were present in the soil as endospores: reproductive cells with a hard coat that protects them against adverse environmental conditions. Surprisingly, the same proportion of endospores was found in saline soil closer to the coast. The authors deduce from these findings that the endospores may have been carried to the Tokyo area by winds or dust storms, and possibly originated in salt lakes in Inner Mongolia in China.

This study adds to the evidence that dust storms in Asia can have implications in geographically remote countries. Previous studies have shown that dust storms in Northern China and Mongolia can cause myriad problems elsewhere, including respiratory problems, loss of livestock and crops and disruption of communication.

Juliette Savin | alfa

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>